Journal articles on the topic 'Phase-field model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phase-field model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Marconi, Umberto Marini Bettolo, Andrea Crisanti, and Giulia Iori. "Soluble phase field model." Physical Review E 56, no. 1 (July 1, 1997): 77–87. http://dx.doi.org/10.1103/physreve.56.77.
Full textLiu, Honghu. "Phase transitions of a phase field model." Discrete & Continuous Dynamical Systems - B 16, no. 3 (2011): 883–94. http://dx.doi.org/10.3934/dcdsb.2011.16.883.
Full textKATAYAMA, Yuta, Tomohiro TAKAKI, and Junji KATO. "123 Modified multi-phase-field topology optimization model." Proceedings of The Computational Mechanics Conference 2015.28 (2015): _123–1_—_123–2_. http://dx.doi.org/10.1299/jsmecmd.2015.28._123-1_.
Full textFan, Ling, Walter Werner, Swen Subotić, Daniel Schneider, Manuel Hinterstein, and Britta Nestler. "Multigrain phase-field simulation in ferroelectrics with phase coexistences: An improved phase-field model." Computational Materials Science 203 (February 2022): 111056. http://dx.doi.org/10.1016/j.commatsci.2021.111056.
Full textChen, Xinfu, G. Caginalp, and Christof Eck. "A rapidly converging phase field model." Discrete & Continuous Dynamical Systems - A 15, no. 4 (2006): 1017–34. http://dx.doi.org/10.3934/dcds.2006.15.1017.
Full textWu, Pingping, and Yongfeng Liang. "Lattice Phase Field Model for Nanomaterials." Materials 14, no. 23 (November 29, 2021): 7317. http://dx.doi.org/10.3390/ma14237317.
Full textKim, Seong Gyoon, Won Tae Kim, and Toshio Suzuki. "Phase-field model for binary alloys." Physical Review E 60, no. 6 (December 1, 1999): 7186–97. http://dx.doi.org/10.1103/physreve.60.7186.
Full textKarma, Alain. "Phase-field model of eutectic growth." Physical Review E 49, no. 3 (March 1, 1994): 2245–50. http://dx.doi.org/10.1103/physreve.49.2245.
Full textAntanovskii, Leonid K. "A phase field model of capillarity." Physics of Fluids 7, no. 4 (April 1995): 747–53. http://dx.doi.org/10.1063/1.868598.
Full textShen, C., and Y. Wang. "Phase field model of dislocation networks." Acta Materialia 51, no. 9 (May 2003): 2595–610. http://dx.doi.org/10.1016/s1359-6454(03)00058-2.
Full textCai, Ziming, Xiaohui Wang, Longtu Li, and Wei Hong. "Electrical treeing: A phase-field model." Extreme Mechanics Letters 28 (April 2019): 87–95. http://dx.doi.org/10.1016/j.eml.2019.02.006.
Full textMiranville, Alain. "On the conserved phase-field model." Journal of Mathematical Analysis and Applications 400, no. 1 (April 2013): 143–52. http://dx.doi.org/10.1016/j.jmaa.2012.11.038.
Full textLobkovsky, Alexander E., and James A. Warren. "Phase-field model of crystal grains." Journal of Crystal Growth 225, no. 2-4 (May 2001): 282–88. http://dx.doi.org/10.1016/s0022-0248(01)00867-3.
Full textSuzuki, Toshio, Machiko Ode, Seong Gyoon Kim, and Won Tae Kim. "Phase-field model of dendritic growth." Journal of Crystal Growth 237-239 (April 2002): 125–31. http://dx.doi.org/10.1016/s0022-0248(01)01891-7.
Full textKuhn, C., and R. Müller. "A phase field model for fracture." PAMM 8, no. 1 (December 2008): 10223–24. http://dx.doi.org/10.1002/pamm.200810223.
Full textPenrose, Oliver, and Paul C. Fife. "On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model." Physica D: Nonlinear Phenomena 69, no. 1-2 (November 1993): 107–13. http://dx.doi.org/10.1016/0167-2789(93)90183-2.
Full textBerti, Valeria, Mauro Fabrizio, and Diego Grandi. "A phase field model for liquid-vapour phase transitions." Discrete & Continuous Dynamical Systems - S 6, no. 2 (2013): 317–30. http://dx.doi.org/10.3934/dcdss.2013.6.317.
Full textMuramatsu, M., K. Yashiro, T. Kawada, and K. Terada. "Simulation of ferroelastic phase formation using phase-field model." International Journal of Mechanical Sciences 146-147 (October 2018): 462–74. http://dx.doi.org/10.1016/j.ijmecsci.2017.12.027.
Full textKuwamoto, Akifumi, Tomohiro Takaki, and Eiji Nakamachi. "Consideration of Neurite Outgrowth Model Using Phase-field Method." Proceedings of The Computational Mechanics Conference 2014.27 (2014): 581–82. http://dx.doi.org/10.1299/jsmecmd.2014.27.581.
Full textSakakibara, Tetsuya, Tomohiro Takaki, and Masaki Kurata. "Development of phase-field model for gas-liquid-solid three-phase flow." Proceedings of The Computational Mechanics Conference 2014.27 (2014): 593–94. http://dx.doi.org/10.1299/jsmecmd.2014.27.593.
Full textZhang, Hao, Hui Peng, Xiao-yang Pei, Ping Li, Tie-gang Tang, and Ling-cang Cai. "A phase-field model for spall fracture." Journal of Applied Physics 129, no. 12 (March 28, 2021): 125903. http://dx.doi.org/10.1063/5.0043675.
Full textLiu, Zhuan, and Kunkun Guo. "Cell Morphodynamics via Phase Field Dynamics Model." Acta Chimica Sinica 71, no. 08 (2013): 1183. http://dx.doi.org/10.6023/a13030266.
Full textKOBAYASHI, Ryo. "1111 The Fun of Phase Field Model." Proceedings of The Computational Mechanics Conference 2009.22 (2009): 58. http://dx.doi.org/10.1299/jsmecmd.2009.22.58.
Full textTravasso, Rui D. M., Mario Castro, and Joana C. R. E. Oliveira. "The phase-field model in tumor growth." Philosophical Magazine 91, no. 1 (January 2011): 183–206. http://dx.doi.org/10.1080/14786435.2010.501771.
Full textGuo, X. H., San-Qiang Shi, and X. Q. Ma. "Elastoplastic phase field model for microstructure evolution." Applied Physics Letters 87, no. 22 (November 28, 2005): 221910. http://dx.doi.org/10.1063/1.2138358.
Full textKam, Royce, and Herbert Levine. "Phase-field model of spiral dendritic growth." Physical Review E 54, no. 3 (September 1, 1996): 2797–801. http://dx.doi.org/10.1103/physreve.54.2797.
Full textProvatas, Nikolas, Martin Grant, and K. R. Elder. "Phase-field model for activated reaction fronts." Physical Review B 53, no. 10 (March 1, 1996): 6263–72. http://dx.doi.org/10.1103/physrevb.53.6263.
Full textGlasner, Karl, and Robert Almgren. "Dual fronts in a phase field model." Physica D: Nonlinear Phenomena 146, no. 1-4 (November 2000): 328–40. http://dx.doi.org/10.1016/s0167-2789(00)00155-x.
Full textGeslin, Pierre-Antoine, Benoît Appolaire, and Alphonse Finel. "A phase field model for dislocation climb." Applied Physics Letters 104, no. 1 (January 6, 2014): 011903. http://dx.doi.org/10.1063/1.4860999.
Full textAiki, Toyohiko. "Phase-field model including a hysteresis operator." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (November 2005): e1219-e1230. http://dx.doi.org/10.1016/j.na.2005.03.091.
Full textFabrizio, Mauro. "Plasticity, internal structure and phase field model." Mechanics Research Communications 43 (July 2012): 29–33. http://dx.doi.org/10.1016/j.mechrescom.2012.04.001.
Full textMiehe, C., F. Welschinger, and M. Hofacker. "A phase field model of electromechanical fracture." Journal of the Mechanics and Physics of Solids 58, no. 10 (October 2010): 1716–40. http://dx.doi.org/10.1016/j.jmps.2010.06.013.
Full textKuhn, Charlotte, and Ralf Müller. "A continuum phase field model for fracture." Engineering Fracture Mechanics 77, no. 18 (December 2010): 3625–34. http://dx.doi.org/10.1016/j.engfracmech.2010.08.009.
Full textArif, T. T., and R. S. Qin. "A phase-field model for bainitic transformation." Computational Materials Science 77 (September 2013): 230–35. http://dx.doi.org/10.1016/j.commatsci.2013.04.044.
Full textGathright, William, Michael Jensen, and Dan Lewis. "Phase Field Model of Electrochemical Impedance Spectroscopy." ECS Transactions 35, no. 1 (December 16, 2019): 1077–85. http://dx.doi.org/10.1149/1.3570088.
Full textOde, Machiko, Toshio Suzuki, Seong Gyoon Kim, and Won Tae Kim. "Ostwald Ripening Analysis Using Phase-Field Model." MATERIALS TRANSACTIONS 42, no. 11 (2001): 2410–14. http://dx.doi.org/10.2320/matertrans.42.2410.
Full textHeo, Tae Wook, Yi Wang, Saswata Bhattacharya, Xin Sun, Shenyang Hu, and Long-Qing Chen. "A phase-field model for deformation twinning." Philosophical Magazine Letters 91, no. 2 (February 2011): 110–21. http://dx.doi.org/10.1080/09500839.2010.537284.
Full textOhno, Munekazu, Tomohiro Takaki, and Yasushi Shibuta. "Variational formulation of quantitative phase-field model." Proceedings of The Computational Mechanics Conference 2016.29 (2016): 4_133. http://dx.doi.org/10.1299/jsmecmd.2016.29.4_133.
Full textHoang, Dieu Hung, M. Beneš, and J. Stráský. "Anisotropic Phase Field Model of Heteroepitaxial Growth." Acta Physica Polonica A 128, no. 4 (October 2015): 520–22. http://dx.doi.org/10.12693/aphyspola.128.520.
Full textSteinbach, Ingo, Lijun Zhang, and Mathis Plapp. "Phase-field model with finite interface dissipation." Acta Materialia 60, no. 6-7 (April 2012): 2689–701. http://dx.doi.org/10.1016/j.actamat.2012.01.035.
Full textGreenwood, Michael, Chad Sinclair, and Matthias Militzer. "Phase field crystal model of solute drag." Acta Materialia 60, no. 16 (September 2012): 5752–61. http://dx.doi.org/10.1016/j.actamat.2012.06.056.
Full textBrush, Lucien N. "A phase field model with electric current." Journal of Crystal Growth 247, no. 3-4 (January 2003): 587–96. http://dx.doi.org/10.1016/s0022-0248(02)01976-0.
Full textCha, Pil-Ryung, Dong-Hee Yeon, and Jong-Kyu Yoon. "Phase-field model for multicomponent alloy solidification." Journal of Crystal Growth 274, no. 1-2 (January 2005): 281–93. http://dx.doi.org/10.1016/j.jcrysgro.2004.10.002.
Full textRoy, Pranesh, Anil Pathrikar, S. P. Deepu, and Debasish Roy. "Peridynamics damage model through phase field theory." International Journal of Mechanical Sciences 128-129 (August 2017): 181–93. http://dx.doi.org/10.1016/j.ijmecsci.2017.04.016.
Full textSchmitt, Regina, Ralf Müller, and Charlotte Kuhn. "A Phase Field Model for Martensitic Transformations." PAMM 12, no. 1 (December 2012): 261–62. http://dx.doi.org/10.1002/pamm.201210121.
Full textVerhoosel, Clemens V., and René de Borst. "A phase-field model for cohesive fracture." International Journal for Numerical Methods in Engineering 96, no. 1 (July 24, 2013): 43–62. http://dx.doi.org/10.1002/nme.4553.
Full textAlbrecht, Claire, Irene J. Beyerlein, and Morgan R. Jones. "Temperature dependent phase field dislocation dynamics model." European Journal of Mechanics - A/Solids 100 (July 2023): 104987. http://dx.doi.org/10.1016/j.euromechsol.2023.104987.
Full textBenzoni-Gavage, Sylvie, Laurent Chupin, Didier Jamet, and Julien Vovelle. "On a phase field model for solid-liquid phase transitions." Discrete & Continuous Dynamical Systems - A 32, no. 6 (2012): 1997–2025. http://dx.doi.org/10.3934/dcds.2012.32.1997.
Full textYAMANAKA, Akinori, Tomohiro TAKAKI, and Yoshihiro TOMITA. "123 Simulation of Phase Transformation using Elastoplastic Phase-Field Model." Proceedings of The Computational Mechanics Conference 2008.21 (2008): 402–3. http://dx.doi.org/10.1299/jsmecmd.2008.21.402.
Full textElliott, Charles M., and Björn Stinner. "A Surface Phase Field Model for Two-Phase Biological Membranes." SIAM Journal on Applied Mathematics 70, no. 8 (January 2010): 2904–28. http://dx.doi.org/10.1137/090779917.
Full text