Academic literature on the topic 'Phase field modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phase field modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phase field modeling"
Nestler, Britta, and Adam A. Wheeler. "Phase-field modeling of multi-phase solidification." Computer Physics Communications 147, no. 1-2 (August 2002): 230–33. http://dx.doi.org/10.1016/s0010-4655(02)00252-7.
Full textVignal, Philippe A., Nathan Collier, and V. M. Calo. "Phase Field Modeling Using PetIGA." Procedia Computer Science 18 (2013): 1614–23. http://dx.doi.org/10.1016/j.procs.2013.05.329.
Full textQin, R. S., and H. K. D. H. Bhadeshia. "Applications of phase field modeling." Current Opinion in Solid State and Materials Science 15, no. 3 (June 2011): 81–82. http://dx.doi.org/10.1016/j.cossms.2011.04.004.
Full textTAKAKI, Tomohiro, and Yoshihiro TOMITA. "610 Phase-Field Modeling during Dynamic Recrystallization." Proceedings of Conference of Kansai Branch 2007.82 (2007): _6–10_. http://dx.doi.org/10.1299/jsmekansai.2007.82._6-10_.
Full textDrolet, François, K. R. Elder, Martin Grant, and J. M. Kosterlitz. "Phase-field modeling of eutectic growth." Physical Review E 61, no. 6 (June 1, 2000): 6705–20. http://dx.doi.org/10.1103/physreve.61.6705.
Full textSpatschek, Robert, Efim Brener, and Alain Karma. "Phase field modeling of crack propagation." Philosophical Magazine 91, no. 1 (January 2011): 75–95. http://dx.doi.org/10.1080/14786431003773015.
Full textPusztai, T., G. Bortel, and L. Gránásy. "Phase field modeling of polycrystalline freezing." Materials Science and Engineering: A 413-414 (December 2005): 412–17. http://dx.doi.org/10.1016/j.msea.2005.09.057.
Full textShibuta, Yasushi, Yoshinao Okajima, and Toshio Suzuki. "Phase-field modeling for electrodeposition process." Science and Technology of Advanced Materials 8, no. 6 (January 2007): 511–18. http://dx.doi.org/10.1016/j.stam.2007.08.001.
Full textWilson, Zachary A., and Chad M. Landis. "Phase-field modeling of hydraulic fracture." Journal of the Mechanics and Physics of Solids 96 (November 2016): 264–90. http://dx.doi.org/10.1016/j.jmps.2016.07.019.
Full textZHANG, Yutuo, Chengzhi WANG, Dianzhong LI, and Yiyi LI. "Phase field modeling of dendrite growth." Acta Metallurgica Sinica (English Letters) 22, no. 3 (June 2009): 197–201. http://dx.doi.org/10.1016/s1006-7191(08)60089-7.
Full textDissertations / Theses on the topic "Phase field modeling"
Li, Yichen. "Phase-field Modeling of Phase Change Phenomena." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99148.
Full textMaster of Science
Phase change phenomena, such as freezing and melting, are ubiquitous in our everyday life. Mathematically, this is a moving boundary problem where the phase front evolves based on the local temperature. The phase change is usually accompanied with the release or absorption of latent heat, which in turn affects the temperature. In this work, we develop a phase-field model, where the phase front is treated as a diffuse interface, to simulate the liquid-solid transition. This model is consistent with the second law of thermodynamics. Our finite-element simulations successfully capture the solidification and melting processes including the interesting phenomenon of recalescence.
Loginova, Irina. "Phase-field modeling of diffusion controlled phase transformations." Doctoral thesis, KTH, Mechanics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3626.
Full textDiffusion controlled phase transformations are studied bymeans of the phase-field method. Morphological evolution ofdendrites, grains and Widmanst\"atten plates is modeled andsimulated.
Growth of dendrites into highly supersaturated liquids ismodeled for binary alloy solidification. Phase-field equationsthat involve both temperature and solute redistribution areformulated. It is demonstrated that while at low undercoolingheat diffusion does not affect the growth of dendrites, i.e.solidification is nearly isothermal, at high cooling rates thesupersaturation is replaced by the thermal undercooling as thedriving force for growth.
In experiments many crystals with different orientationsnucleate. The growth of randomly oriented dendrites, theirsubsequent impingement ant formation of grain boundaries arestudied in two dimensions using the FEM on adaptive grids.
The structure of dendrites is determined by growthconditions and physical parameters of the solidifying material.Effects of the undercooling and anisotropic surface energy onthe crystal morphology are investigated. Transition betweenseaweeds, doublons and dendrites solidifying out of puresubstance is studied and compared to experimental data. Two-and three-dimensional simulations are performed in parallel onadaptive and uniform meshes.
A phase-field method based on the Gibbs energy functional isformulated for ferrite to austenite phase transformation inFe-C. In combination with the solute drag model, transitionbetween diffusion controlled and massive transformations as afunction of C concentration and temperature is established byperforming a large number of one dimensional calculations withreal physical parameters. In two dimensions, growth ofWidmanstaetten plates is governed by the highly anisotropicsurface energy. It is found that the plate tip can beapproximated as sharp, in agreement with experiments.
Keywords:heat and solute diffusion, solidification,solid-solid phase transformation, microstructure, crystalgrowth, dendrite, grain boundary, Widmanstaetten plate,phase-field, adaptive mesh generation, FEM.
Abdollahi, Amir. "Phase-field modeling of fracture in ferroelectric materials." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285833.
Full textLos materiales ferroeléctricos poseen únicas propiedades electro-mecánicas y por eso se utilizan para los micro-dispositivos como sensores, actuadores y transductores. No obstante, debido a la fragilidad intrínseca de los ferroeléctricos, el diseño óptimo de los dispositivos electro-mecánicos es altamente dependiente de la comprensión del comportamiento de fractura en estos materiales. Los procesos de fractura en ferroeléctricos son notoriamente complejos, sobre todo debido a las interacciones entre campos de tensión y eléctricos y los fenómenos localizados en zona de fractura (formación y evolución de los dominios de las diferentes variantes cristalográficas). Los modelos de campo de fase son particularmente útiles para un problema tan complejo, ya que una sola ecuación diferencial parcial que gobierna el campo de fase lleva a cabo a la vez (1) el seguimiento de las interfaces de una manera suave (grietas, paredes de dominio) y (2) la modelización de los fenómenos interfaciales como las energías de la pared de dominio o las condiciones de las caras de grieta. Tal modelo no tiene ninguna dificultad, por ejemplo en la descripción de la nucleación de los dominios y las grietas o la ramificación y la fusión de las grietas. Además, la naturaleza variacional de estos modelos facilita el acoplamiento de múltiples físicas (campos eléctricos y mecánicos en este caso). La principal aportación de esta tesis es la propuesta de un modelo campo de fase para la simulación de la formación y evolución de la microestructura y la nucleación y propagación de grietas en materiales ferroeléctricos. El modelo aúna dos modelos de campo de fase para la fractura frágil y para la formación de dominios ferroeléctricos. La aplicación de elementos finitos a la teoría es descrita. Las simulaciones muestran las interacciones entre la microestructura y la fractura del bajo cargas mecánicas y electro-mecánicas. Otro de los objetivos de esta tesis es la codificación de diferentes condiciones de contorno de grieta porque estas condiciones afectan en gran medida el comportamiento de la fractura de ferroeléctricos. La imposición de estas condiciones se discuten y se comparan con los resultados de modelos clasicos para validar los modelos propuestos. Las simulaciones muestran los efectos de diferentes condiciones, cargas electro-mecánicas y medios que llena el hueco de la grieta en la propagación de las fisuras y la microestructura del material. En un tercer paso, el modelo se modifica mediante la introducción de una condición que representa el comportamiento asimétrico en tensión y compresión. El modelo modificado hace posible explicar el crecimiento de la grieta anisotrópica en ferroeléctricos. Este modelo también se utiliza para el análisis de la fractura de los actuadores ferroeléctricos, lo que demuestra el potencial del modelo para su futura aplicación. El modelo se extiende también a policristales mediante la introducción de microestructuras policristalinas realistas en el modelo. Modos de fractura inter y trans-granulares de propagación se observan en las simulaciones. Por último y para completar, la teoría del campo de fase se extiende para la simulación de las grietas conductivas y algunas simulaciones preliminares también se realizan en tres dimensiones. Principales características del fenómeno de la propagación de la grieta predicho por las simulaciones de esta tesis se comparan directamente con las observaciones experimentales.
Asp, Grönhagen Klara. "Phase-field modeling of surface-energy driven processes." Doctoral thesis, KTH, Metallografi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11036.
Full textQC 20100622
Bush, Joshua. "Phase Field Modeling of Thermotransport in Multicomponent Systems." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5152.
Full textID: 031001396; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed June 3, 2013).; Thesis (M.S.M.S.E.)--University of Central Florida, 2012.; Includes bibliographical references (p. 50-53).
M.S.M.S.E.
Masters
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
Asp, Grönhagen Klara. "Phase-field modeling of surface-energy driven processes." Stockholm : Materialvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11036.
Full textUllbrand, Jennifer. "Phase field modeling of Spinodal decomposition in TiAlN." Licentiate thesis, Linköpings universitet, Nanostrukturerade material, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79611.
Full textWinkler, Benjamin [Verfasser], and Falko [Akademischer Betreuer] Ziebert. "Modeling crawling cellular motility with a phase field approach." Freiburg : Universität, 2019. http://d-nb.info/1193423104/34.
Full textShen, Chen. "The fundamentals and applications of phase field method in quantitative microstructural modeling." Columbus, Ohio : Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1080249965.
Full textTitle from first page of PDF file. Document formatted into pages; contains xx, 217 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Yunzhi Wang, Dept. of Materials Science and Engineering. Includes bibliographical references (p. 209-217).
Omatuku, Emmanuel Ngongo. "Phase field modeling of dynamic brittle fracture at finite strains." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30172.
Full textBooks on the topic "Phase field modeling"
Biner, S. Bulent. Programming Phase-Field Modeling. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5.
Full textMazo, Aleksandr, and Konstantin Potashev. The superelements. Modeling of oil fields development. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043236.
Full textKozma, Robert, and Walter J. Freeman. Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24406-8.
Full textNudo, Raffaele, ed. Lezioni dai terremoti: fonti di vulnerabilità, nuove strategie progettuali, sviluppi normativi. Florence: Firenze University Press, 2012. http://dx.doi.org/10.36253/978-88-6655-072-3.
Full textBiner, S. Bulent. Programming Phase-Field Modeling. Springer London, Limited, 2016.
Find full textWick, Thomas. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. de Gruyter GmbH, Walter, 2020.
Find full textZhang, Tao. Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries. KIT Scientific Publishing, 2021.
Find full textProvatas, Nikolas, Tatu Pinomaa, and Nana Ofori-Opoku. Quantitative Phase Field Modelling of Solidification. Taylor & Francis Group, 2021.
Find full textBook chapters on the topic "Phase field modeling"
Karma, Alain. "Phase-Field Modeling." In Handbook of Materials Modeling, 2087–103. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3286-2_108.
Full textKarma, Alain. "Phase-Field Modeling." In Handbook of Materials Modeling, 2087–103. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/978-1-4020-3286-8_108.
Full textBiner, S. Bulent. "An Overview of the Phase-Field Method and Its Formalisms." In Programming Phase-Field Modeling, 1–7. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_1.
Full textBiner, S. Bulent. "Introduction to Numerical Solution of Partial Differential Equations." In Programming Phase-Field Modeling, 9–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_2.
Full textBiner, S. Bulent. "Preliminaries About the Codes." In Programming Phase-Field Modeling, 13–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_3.
Full textBiner, S. Bulent. "Solving Phase-Field Models with Finite Difference Algorithms." In Programming Phase-Field Modeling, 17–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_4.
Full textBiner, S. Bulent. "Solving Phase-Field Models with Fourier Spectral Methods." In Programming Phase-Field Modeling, 99–168. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_5.
Full textBiner, S. Bulent. "Solving Phase-Field Equations with Finite Elements." In Programming Phase-Field Modeling, 169–336. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_6.
Full textBiner, S. Bulent. "Phase-Field Crystal Modeling of Material Behavior." In Programming Phase-Field Modeling, 337–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_7.
Full textBiner, S. Bulent. "Concluding Remarks." In Programming Phase-Field Modeling, 369. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41196-5_8.
Full textConference papers on the topic "Phase field modeling"
Sekerka, Robert F. "Phase Field Modeling of Crystal Growth Morphology." In PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS: Basedon the lectures presented at the 13th International Summer School on Crystal Growth. AIP, 2007. http://dx.doi.org/10.1063/1.2751915.
Full textVizoso, Daniel, Chaitanya Deo, and Remi Dingreville. "Phase Field Modeling of Radiation-Induced Segregation." In Proposed for presentation at the Sandia Academic Alliance Spring 2021 Georgia Tech LDRD Virtual Poster Session held March 23, 2021 in Albuquerque, NM. US DOE, 2021. http://dx.doi.org/10.2172/1856469.
Full textMallick, Ashis, Srikanth Vedantam, Joaquín Marro, Pedro L. Garrido, and Pablo I. Hurtado. "Phase field simulation of polycrystalline grain growth in presence of mobile second phase particles." In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082292.
Full textXiang, Xiao, Michael Kudenov, Michael Escuti, and Kathryn J. Hornburg. "Optimization of aspheric geometric-phase lenses for improved field-of-view." In Optical Modeling and Performance Predictions X, edited by Marie B. Levine-West and Mark A. Kahan. SPIE, 2018. http://dx.doi.org/10.1117/12.2322326.
Full textVedantam, S., A. Mallick, Joaquín Marro, Pedro L. Garrido, and Pablo I. Hurtado. "Phase field simulation of grain growth in presence of mobile second phase particles: A bi-crystal model." In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082320.
Full textSu, Yu. "Phase Field Modeling for Domain Characterization of Ferroelectric Materials." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40863.
Full textOates, William S., Aurelian Malbec, Scott L. Herdic, and Christopher S. Lynch. "Phase field modeling of domain structures in ferroelectric materials." In Smart Structures and Materials, edited by Dimitris C. Lagoudas. SPIE, 2004. http://dx.doi.org/10.1117/12.539902.
Full textKontsos, Antonios, Wenyuan Li, and Chad M. Landis. "Computational phase-field modeling of defect interactions in ferroelectrics." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Zoubeida Ounaies and Jiangyu Li. SPIE, 2009. http://dx.doi.org/10.1117/12.816127.
Full textOates, William S., and Justin Collins. "Uncertainty quantification in quantum informed ferroelectric phase field modeling." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Nakhiah C. Goulbourne. SPIE, 2015. http://dx.doi.org/10.1117/12.2084413.
Full textWang, Nanqiao, and Like Li. "LATTICE BOLTZMANN - PHASE FIELD METHOD FOR DENDRITIC GROWTH MODELING." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.cmd.032032.
Full textReports on the topic "Phase field modeling"
Karma, Alain. Phase-Field Modeling of Materials Interfaces and Nanostructures. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1906284.
Full textHOYT, JEFFREY J., MARK ASTA, and ALAIN KARMA. Linking Atomistic Simulations with Phase Field Modeling of Solidification. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/791896.
Full textAllen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam, and Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42605.
Full textAuthor, Not Given. Brittle fracture phase-field modeling of a short-rod specimen. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225864.
Full textLandis, Chad M., and Thomas J. Hughes. Phase-Field Modeling and Computation of Crack Propagation and Fracture. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603638.
Full textJuanes, Ruben. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1332323.
Full textHales, Jason, and Veena Tikare. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1149015.
Full textLuke, Gary, Mark Eagar, Michael Sears, Scott Felt, and Bob Prozan. Status of Advanced Two-Phase Flow Model Development for SRM Chamber Flow Field and Combustion Modeling. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada427829.
Full textTrabold, T. A., and R. Kumar. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/353192.
Full textChen, Long-Qing, Xiaoxing Cheng, and Jacob Zorn. DOE DE-FG02-07ER46417 Grant Final Technical Report: Structure and Dynamics of Domains in Ferroelectric Nanostructures – Phase-Field Modeling. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1616792.
Full text