To see the other types of publications on this topic, follow the link: Phase field modeling.

Journal articles on the topic 'Phase field modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Phase field modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nestler, Britta, and Adam A. Wheeler. "Phase-field modeling of multi-phase solidification." Computer Physics Communications 147, no. 1-2 (August 2002): 230–33. http://dx.doi.org/10.1016/s0010-4655(02)00252-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vignal, Philippe A., Nathan Collier, and V. M. Calo. "Phase Field Modeling Using PetIGA." Procedia Computer Science 18 (2013): 1614–23. http://dx.doi.org/10.1016/j.procs.2013.05.329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, R. S., and H. K. D. H. Bhadeshia. "Applications of phase field modeling." Current Opinion in Solid State and Materials Science 15, no. 3 (June 2011): 81–82. http://dx.doi.org/10.1016/j.cossms.2011.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

TAKAKI, Tomohiro, and Yoshihiro TOMITA. "610 Phase-Field Modeling during Dynamic Recrystallization." Proceedings of Conference of Kansai Branch 2007.82 (2007): _6–10_. http://dx.doi.org/10.1299/jsmekansai.2007.82._6-10_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drolet, François, K. R. Elder, Martin Grant, and J. M. Kosterlitz. "Phase-field modeling of eutectic growth." Physical Review E 61, no. 6 (June 1, 2000): 6705–20. http://dx.doi.org/10.1103/physreve.61.6705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spatschek, Robert, Efim Brener, and Alain Karma. "Phase field modeling of crack propagation." Philosophical Magazine 91, no. 1 (January 2011): 75–95. http://dx.doi.org/10.1080/14786431003773015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pusztai, T., G. Bortel, and L. Gránásy. "Phase field modeling of polycrystalline freezing." Materials Science and Engineering: A 413-414 (December 2005): 412–17. http://dx.doi.org/10.1016/j.msea.2005.09.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shibuta, Yasushi, Yoshinao Okajima, and Toshio Suzuki. "Phase-field modeling for electrodeposition process." Science and Technology of Advanced Materials 8, no. 6 (January 2007): 511–18. http://dx.doi.org/10.1016/j.stam.2007.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Zachary A., and Chad M. Landis. "Phase-field modeling of hydraulic fracture." Journal of the Mechanics and Physics of Solids 96 (November 2016): 264–90. http://dx.doi.org/10.1016/j.jmps.2016.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHANG, Yutuo, Chengzhi WANG, Dianzhong LI, and Yiyi LI. "Phase field modeling of dendrite growth." Acta Metallurgica Sinica (English Letters) 22, no. 3 (June 2009): 197–201. http://dx.doi.org/10.1016/s1006-7191(08)60089-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Seong Gyoon, and Won Tae Kim. "Phase-field modeling of rapid solidification." Materials Science and Engineering: A 304-306 (May 2001): 281–86. http://dx.doi.org/10.1016/s0921-5093(00)01453-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Huang, Chuanshi, and Xiaosheng Gao. "Phase field modeling of hydrogen embrittlement." International Journal of Hydrogen Energy 45, no. 38 (July 2020): 20053–68. http://dx.doi.org/10.1016/j.ijhydene.2020.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gyoon Kim, Seong, Won Tae Kim, Toshio Suzuki, and Machiko Ode. "Phase-field modeling of eutectic solidification." Journal of Crystal Growth 261, no. 1 (January 2004): 135–58. http://dx.doi.org/10.1016/j.jcrysgro.2003.08.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ambati, M., T. Gerasimov, and L. De Lorenzis. "Phase-field modeling of ductile fracture." Computational Mechanics 55, no. 5 (April 10, 2015): 1017–40. http://dx.doi.org/10.1007/s00466-015-1151-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kassner, Klaus, Robert Spatschek, and Clemens Gugenberger. "Phase-field modeling of surface diffusion." International Journal of Materials Research 101, no. 4 (April 2010): 456–61. http://dx.doi.org/10.3139/146.110294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mauthe, Steffen, and Christian Miehe. "Phase-Field Modeling of Hydraulic Fracture." PAMM 15, no. 1 (October 2015): 141–42. http://dx.doi.org/10.1002/pamm.201510061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Wei, Lu Feng, Jing Wang, and Yi Hao. "Phase Field Modeling of Multilayer Epitaxial Growth." Advanced Materials Research 557-559 (July 2012): 2396–400. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.2396.

Full text
Abstract:
We report simulations of multilayer epitaxial growth using a previously proposed continuum phase field model [2, 5]. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. We focus on the evolution of morphology on multilayer islands under a certain condition. Roughness of epitaxial surface increases rapidly with the coverage increasing when the deposition rate is larger than a critical value. Layer-by- layer growth is the most primary method among the styles of islands growth under low deposition rate. Roughness is independent of temperature, when the temperature is larger than a critical value.
APA, Harvard, Vancouver, ISO, and other styles
18

Gao, Ying Jun, Wen Quan Zhou, Yao Liu, Chuang Gao Huang, and Qiang Hua Lu. "Phase Field Crystal Modeling for Nanocrystalline Growth." Advanced Materials Research 785-786 (September 2013): 512–16. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.512.

Full text
Abstract:
The two-mode phase field-crystal (PFC) method is used to simulate the nanograin growth, including the grain growth in different sets of crystal planes, the grain boundary structure with mismatch, the grain orientation and also the incoherent grain boundary in two dimensional plane. It is obviously observed that there are dislocation structures in nanograin boundary due to mismatch and misorientation of grains. These simulation results can not only be used in artificial controlling the grain boundary of nanograin, but also is of significant for designing new nanograin with a good grain boundary for structure materials.
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Haifeng, Wei Wang, Yajun Cao, and Shifan Liu. "Phase-Field Modeling Fracture in Anisotropic Materials." Advances in Civil Engineering 2021 (July 30, 2021): 1–13. http://dx.doi.org/10.1155/2021/4313755.

Full text
Abstract:
The phase-field method is a widely used technique to simulate crack initiation, propagation, and coalescence without the need to trace the fracture surface. In the phase-field theory, the energy to create a fracture surface per unit area is equal to the critical energy release rate. Therefore, the precise definition of the crack-driving part is the key to simulate crack propagation. In this work, we propose a modified phase-field model to capture the complex crack propagation, in which the elastic strain energy is decomposed into volumetric-deviatoric energy parts. Because of the volumetric-deviatoric energy split, we introduce a novel form of the crack-driving energy to simulate mixed-mode fracture. Furthermore, a new degradation function is proposed to simulate crack processes in brittle materials with different degradation rates. The proposed model is implemented by a staggered algorithm and to validate the performance of the phase-field modelling, and several numerical examples are constructed under plane strain condition. All the presented examples demonstrate the capability of the proposed approach in solving problems of brittle fracture propagation.
APA, Harvard, Vancouver, ISO, and other styles
20

Yoshioka, Keita, Mostafa Mollaali, and Olaf Kolditz. "Variational phase-field fracture modeling with interfaces." Computer Methods in Applied Mechanics and Engineering 384 (October 2021): 113951. http://dx.doi.org/10.1016/j.cma.2021.113951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sahu, Sarita, and Gerald S. Frankel. "Phase Field Modeling of Crystallographic Corrosion Pits." Journal of The Electrochemical Society 169, no. 2 (February 1, 2022): 020557. http://dx.doi.org/10.1149/1945-7111/ac5349.

Full text
Abstract:
The modeling of corrosion to understand and predict corrosion behavior is a topical issue. Here, a 3D phase field model is developed to simulate the pit morphology, primarily focusing on crystallographic pits. A crystallographic function is employed to incorporate different corrosion rates for different crystallographic planes. The model is benchmarked and validated against an analytical solution for a simple case. 3D crystallographic pits in a single crystal are simulated and the effect of substrate orientation on the pit morphology is studied. The crystallographic pit morphology changes significantly with the substrate orientation and these morphologies have a symmetry consistent with the substrate orientation. This first 3D phase field model of crystallographic pits will help in predicting the intricate shapes of pits, thereby, pushing the frontiers of pitting corrosion modeling.
APA, Harvard, Vancouver, ISO, and other styles
22

UEHARA, Takuya. "913 Phase-field modeling of transforamtion plasticity." Proceedings of The Computational Mechanics Conference 2010.23 (2010): 115–16. http://dx.doi.org/10.1299/jsmecmd.2010.23.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Strobl, M., and Th Seelig. "Phase field modeling of Hertzian indentation fracture." Journal of the Mechanics and Physics of Solids 143 (October 2020): 104026. http://dx.doi.org/10.1016/j.jmps.2020.104026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Levitas, Valery I., Alexander V. Idesman, and Ameeth K. Palakala. "Phase-field modeling of fracture in liquid." Journal of Applied Physics 110, no. 3 (August 2011): 033531. http://dx.doi.org/10.1063/1.3619807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Xiao, Z. H., A. A. Semenov, C. H. Woo, and S. Q. Shi. "Single void dynamics in phase field modeling." Journal of Nuclear Materials 439, no. 1-3 (August 2013): 25–32. http://dx.doi.org/10.1016/j.jnucmat.2013.03.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lamorgese, Andrea G., Dafne Molin, and Roberto Mauri. "Phase Field Approach to Multiphase Flow Modeling." Milan Journal of Mathematics 79, no. 2 (November 4, 2011): 597–642. http://dx.doi.org/10.1007/s00032-011-0171-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nestler, Britta, and Abhik Choudhury. "Phase-field modeling of multi-component systems." Current Opinion in Solid State and Materials Science 15, no. 3 (June 2011): 93–105. http://dx.doi.org/10.1016/j.cossms.2011.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Takei, Yasuko. "Phase‐Field Modeling of Grain Boundary Premelting." Journal of Geophysical Research: Solid Earth 124, no. 8 (August 2019): 8057–76. http://dx.doi.org/10.1029/2019jb017632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kuhn, Charlotte, Timo Noll, and Ralf Müller. "On phase field modeling of ductile fracture." GAMM-Mitteilungen 39, no. 1 (May 30, 2016): 35–54. http://dx.doi.org/10.1002/gamm.201610003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bronchard, Q., Y. Le Bouar, and A. Finel. "Quantitative Phase Field Modeling of Precipitation Processes." Advanced Engineering Materials 8, no. 12 (December 2006): 1245–48. http://dx.doi.org/10.1002/adem.200600226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Yunzhi, and Ju Li. "Phase field modeling of defects and deformation." Acta Materialia 58, no. 4 (February 2010): 1212–35. http://dx.doi.org/10.1016/j.actamat.2009.10.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ode, Machiko, Toshiyuki Koyama, Hidehiro Onodera, and Toshio Suzuki. "Phase-field modeling for Sn-Bi soldering." Journal of Electronic Materials 32, no. 12 (December 2003): 1534–39. http://dx.doi.org/10.1007/s11664-003-0126-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Clayton, J. D., R. B. Leavy, and J. Knap. "Phase field modeling of heterogeneous microcrystalline ceramics." International Journal of Solids and Structures 166 (July 2019): 183–96. http://dx.doi.org/10.1016/j.ijsolstr.2019.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dadhich, Ritesh, and Alankar Alankar. "Coupled Crystal Plasticity-Phase Field Modeling of Multi-Phase Metals." Procedia Structural Integrity 14 (2019): 104–11. http://dx.doi.org/10.1016/j.prostr.2019.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mamivand, Mahmood, Mohsen Asle Zaeem, and Haitham El Kadiri. "A review on phase field modeling of martensitic phase transformation." Computational Materials Science 77 (September 2013): 304–11. http://dx.doi.org/10.1016/j.commatsci.2013.04.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Heo, Tae Wook, and Long-Qing Chen. "Phase-Field Modeling of Nucleation in Solid-State Phase Transformations." JOM 66, no. 8 (June 25, 2014): 1520–28. http://dx.doi.org/10.1007/s11837-014-1033-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Monas, A., R. Spatschek, C. Hüter, F. Tabatabaei, E. A. Brener, and M. Apel. "Phase field modeling of phase transitions stimulated by Joule heating." Journal of Crystal Growth 375 (July 2013): 39–48. http://dx.doi.org/10.1016/j.jcrysgro.2013.04.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

TADANO, Yuichi, Ruho KONDO, and Kazuyuki SHIZAWA. "NM-JP-8 Multiphysics modeling of deformation twinning in HCP metals based on phase-field approach." Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _NM—JP—8–1—_NM—JP—8–6. http://dx.doi.org/10.1299/jsmemecj.2012._nm-jp-8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gu, Yijia, Xiaoming He, and Daozhi Han. "On the phase-field modeling of rapid solidification." Computational Materials Science 199 (November 2021): 110812. http://dx.doi.org/10.1016/j.commatsci.2021.110812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fei, Fan, Jinhyun Choo, Chong Liu, and Joshua A. White. "Phase‐field modeling of rock fractures with roughness." International Journal for Numerical and Analytical Methods in Geomechanics 46, no. 5 (January 20, 2022): 841–68. http://dx.doi.org/10.1002/nag.3317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhuang, X., S. Zhou, G. D. Huynh, P. Areias, and T. Rabczuk. "Phase field modeling and computer implementation: A review." Engineering Fracture Mechanics 262 (March 2022): 108234. http://dx.doi.org/10.1016/j.engfracmech.2022.108234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, Zhijie, and Paul Meakin. "Phase-field modeling of solute precipitation and dissolution." Journal of Chemical Physics 129, no. 1 (July 7, 2008): 014705. http://dx.doi.org/10.1063/1.2948949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, H. T., S. D. Zhang, A. K. Soh, and W. Y. Yin. "Phase field modeling of flexoelectricity in solid dielectrics." Journal of Applied Physics 118, no. 3 (July 21, 2015): 034106. http://dx.doi.org/10.1063/1.4926795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ghanbari, F., F. Costanzo, D. P. Hughes, and C. Peco. "Phase-field modeling of constrained interactive fungal networks." Journal of the Mechanics and Physics of Solids 145 (December 2020): 104160. http://dx.doi.org/10.1016/j.jmps.2020.104160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Warren, James A., Ryo Kobayashi, and W. Craig Carter. "Modeling grain boundaries using a phase-field technique." Journal of Crystal Growth 211, no. 1-4 (April 2000): 18–20. http://dx.doi.org/10.1016/s0022-0248(99)00856-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Xie, Yuesong, Oleksandr G. Kravchenko, R. Byron Pipes, and Marisol Koslowski. "Phase field modeling of damage in glassy polymers." Journal of the Mechanics and Physics of Solids 93 (August 2016): 182–97. http://dx.doi.org/10.1016/j.jmps.2015.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Staroselsky, A., R. Acharya, and B. Cassenti. "Phase field modeling of fracture and crack growth." Engineering Fracture Mechanics 205 (January 2019): 268–84. http://dx.doi.org/10.1016/j.engfracmech.2018.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Mo. "[O84] Quantify grain growth from phase field modeling." Calphad 51 (December 2015): 371. http://dx.doi.org/10.1016/j.calphad.2015.01.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Steinbach, I., B. Böttger, J. Eiken, N. Warnken, and S. G. Fries. "CALPHAD and Phase-Field Modeling: A Successful Liaison." Journal of Phase Equilibria and Diffusion 28, no. 1 (April 28, 2007): 101–6. http://dx.doi.org/10.1007/s11669-006-9009-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Berghoff, Marco, and Britta Nestler. "Phase field crystal modeling of ternary solidification microstructures." Computational Condensed Matter 4 (September 2015): 46–58. http://dx.doi.org/10.1016/j.cocom.2015.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography