Academic literature on the topic 'PHBV'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PHBV.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PHBV"
Feijoo, Patricia, Kerly Samaniego-Aguilar, Estefanía Sánchez-Safont, Sergio Torres-Giner, Jose M. Lagaron, Jose Gamez-Perez, and Luis Cabedo. "Development and Characterization of Fully Renewable and Biodegradable Polyhydroxyalkanoate Blends with Improved Thermoformability." Polymers 14, no. 13 (June 21, 2022): 2527. http://dx.doi.org/10.3390/polym14132527.
Full textPustan, Marius, Corina Bîrleanu, Adorján Cristea, and Horia Leonard Banciu. "Nanotribological Investigation of the Poly(3-hydroxybutyrate) Films Manufactured from the Storage Polyesters Produced by Halomonas elongata DSM 2581T." Engineering Proceedings 4, no. 1 (April 14, 2021): 29. http://dx.doi.org/10.3390/micromachines2021-09564.
Full textDeng, Wei, Yingjie Di, Jingxuan Cai, Yueyang Chen, and Shuzhong Yuan. "Target-Site Resistance Mechanisms to Tribenuron-methyl and Cross-resistance Patterns to ALS-inhibiting Herbicides of Catchweed Bedstraw (Galium aparine) with Different ALS Mutations." Weed Science 67, no. 2 (December 18, 2018): 183–88. http://dx.doi.org/10.1017/wsc.2018.70.
Full textKim, Sinil, Byeongsuk Ha, Minseek Kim, and Hyeon-Su Ro. "Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes." Genes 11, no. 5 (May 4, 2020): 506. http://dx.doi.org/10.3390/genes11050506.
Full textAbbasi, Maryam, Dikshya Pokhrel, Erik R. Coats, Nicholas M. Guho, and Armando G. McDonald. "Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure." Polymers 14, no. 19 (October 3, 2022): 4140. http://dx.doi.org/10.3390/polym14194140.
Full textYun, So Hee, Ga Young Jun, Kwan Han Yoon, Yong Soon Park, Young Jin Kim, Inn Kyu Kang, and Oh Hyeong Kwon. "Co-Electrospinning of Microbial Polyester/Gelatin and their Interaction with Fibroblasts." Key Engineering Materials 342-343 (July 2007): 201–4. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.201.
Full textGuo, Yong, Li Wang, Yuxia Chen, Panpan Luo, and Tong Chen. "Properties of Luffa Fiber Reinforced PHBV Biodegradable Composites." Polymers 11, no. 11 (October 27, 2019): 1765. http://dx.doi.org/10.3390/polym11111765.
Full textKrikštanavičienė, Kira, Sigitas Stanys, and Vaida Jonaitienė. "Comparative Investigation of Mechanical–Physical Characteristics of Biodegradable and Non-Degradable Yarns." Autex Research Journal 14, no. 2 (June 1, 2014): 61–72. http://dx.doi.org/10.2478/aut-2014-0001.
Full textZhou, Zhe, Hou Yong Yu, Mei Fang Zhu, and Zong Yi Qin. "Effects of Microcrystalline Cellulose on the Thermal Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)." Advanced Materials Research 284-286 (July 2011): 1778–81. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1778.
Full textWang, Lu, Chang Kun Ding, Hao Bo Shi, Bo Wen Cheng, and Wu Qiong. "Preparation and Properties of Bacterial Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Fibers." Advanced Materials Research 335-336 (September 2011): 1477–80. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.1477.
Full textDissertations / Theses on the topic "PHBV"
Junior, Osvaldo Francisco de Souza. "Desenvolvimento e caracterização de blendas de PHBV e EVA com altos teores de acetado de vinila (VA)." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-01062017-082253/.
Full textThe aim of this work was to develop and characterize blends of poly (hydroxybutyrateco-hydroxyvalerate) (PHBV) and poly (ethylene-co-vinyl acetate) (EVA) containing high amount of vinyl acetate (VA). The VA amount in the EVA used here were 65% (EVA65) and 90% (EVA90) in mass. As the final properties of PHBV blends, a polymer derived from a renewable and biocompostable source with EVA, a polymer of petrochemical and non-biocompostable origin, are highly dependent on the number of constituent phases of the system. Therefore this work initially investigated the miscibility of these blends. PHBV/EVA blends containing 10 to 90% (m/m) of EVA were prepared from the molten state in a torque rheometer and characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The results of the torque rheometry indicated that EVA65 chains underwent thermomechanical degradation with branching and / or crosslinking, while in PHBV the scission process predominated. The PHBV/EVA65 blends presented two vitreous transitions and distinct phase separation, typical of immiscible systems. In contrast, EVA90 showed no degradation in the study conditions. The DSC curves of the PHBV/EVA90 blends presented a single glass transition temperature (Tg) whose variation as a function of the mass fraction of each component was predicted by the Fox equation. The micrographs indicating the presence of a single phase prove that PHBV blends/EVA90 are totally miscible in any proportion. After this step, the influence of VA amount on the PHBV/EVA blends was studied. PHBV/EVA blends containing 5, 10, 20 and 30% (m/m) EVA were prepared in an interpenetrating co-rotational double screw extruder and the influence of VA content on the biodegradability, morphology and thermal and mechanical behavior of these blends was investigated by soil biodegradation test, SEM, DSC, dynamic mechanical analysis (DMA) and mechanical tensile and impact tests. In addition to the influence on the thermal transitions aforementioned, the DSC results showed that the cold crystallization temperature (Tcc) and the melting enthalpy (ΔHm) of PHBV increased with increasing EVA amount. However, the VA content and hence the miscibility of the blends, had a remarkable influence on the cold crystallization enthalpy (ΔHcc) of PHBV. The presence of EVA65 significantly reduced ΔHcc values, while for blends prepared with EVA90 these values were higher than that of pure polymer, suggesting a direct influence on PHBV crystallization kinetics. In general, mechanical tensile properties, such as tensile strength and elastic modulus decreased with increasing EVA content, regardless of the VA content in the blends. However, the deformation at rupture was highly influenced by the VA amount. PHBV/EVA65 blends exhibited small increase in the elongation at break with increasing EVA amount, probably due to the poor interfacial adhesion between their components. The elongation at break of PHBV/EVA90 blends containing 30% (m/m) of EVA was 280%, much higher than the elongation at break of 1.7% of neat PHBV. The biodegradation rate of PHBV/EVA blends was lower than that determined for PHBV. Despite the low loss of mass determined in PHBV and PHBV/EVA blends after 180 days of biodegradation test, it was possible to observe that PHBV/EVA65 blends had higher biodegradation rates than PHBV/EVA blends90. In addition, PHBV/EVA65 blends containing high EVA amount showed higher rates of biodegradation. In the PHBV/EVA90 blends the highest rates of biodegradation were obtained in compositions containing low EVA contents. These results demonstrated that the miscibility affected the biodegradability of PHBV/EVA blends negatively.
Chikh, Amirouche. "Étude des mélanges PHBV/PBS et des mélanges hybrides PHBV/PBS/sépiolite : préparation, caractérisation physico-mécanique et durabilité." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS496/document.
Full textThe main objective of this work was to study the structure-properties relationships of biopolymerblends based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polybutylene succinate (PBS). The work was devised into three parts. The first part was devoted to the study of the properties of PHBV/PBS blends prepared by melt compounding at different weight ratio in terms of morphology and properties. The results obtained were discussed in terms of properties and compared with the neat polymers. The second part was devoted to the study of compatibility of PHBV/PBS blends aiming to improve the interactions at the interface between the two components. The effects of both sepiolite (5% wt.) and PHBV-g-MA (5% wt.) were studied in terms of properties. The results showed a synergistic effect between the compatibilizer PHBV-g-MA and the nanofiller sepiolite though an increase in thermal, mechanical and rheological properties. The last part dealing with the recyclability of PHBV/PBS through the study of the effects of repeated extrusion cycles on the properties of materials. The results showed that after 6 reprocessing cycles the thermo-mechanical degradation of PHBV is significantly reduced in the presence of PBS
Benini, Kelly Cristina Coelho de Carvalho [UNESP]. "Compósitos de nanocelulose / PHBV: manta microfibrilica por eletrofiação." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/123382.
Full textA produção de nanobiocompósitos tem crescido nos últimos anos considerando a necessidade no desenvolvimento de materiais que visam substituir aqueles produzidos com matéria-prima oriunda do petróleo e que demoram muito tempo para se degradarem, prejudicando o meio ambiente. Dentro deste contexto, foram confeccionados nanobiocompósitos de PHBV/nanocristais de celulose (NCC) por casting e eletrofiação. O desenvolvimento do trabalho consistiu inicialmente na determinação da melhor sequência de tratamentos químicos para a obtenção da celulose a partir do capim-sapê, e as condições determinadas foram: tratamento alcalino com solução de NaOH 5% (m/m), a 75°C, seguido por três etapas de branqueamento com H2O2/NaOH. Em seguida, foi realizado um planejamento de experimentos (PE) com o qual foi possível determinar as melhores condições de hidrólise ácida para a obtenção dos NCC, que foram: H2SO4 60% (m/m), a 60°C por 30 min (NCC4) e H2SO4 64% (m/m), a 35°C por 75 min (NCC9). Posteriormente, outro PE foi realizado para determinar os parâmetros mais adequados para a solubilidade e processamento do PHBV, e os resultados obtidos levaram à escolha dos seguintes parâmetros: solução de PHBV com 5% (m/m) de polímero em solventes dimetilformamida e clorofórmio (razão 22/78) solubilizados a 50°C por 30h, casting a 153°C e eletrofiação com agulha 20x10, rotação do tambor de 27 rpm, distância de trabalho de 10 cm, com condições ambientais próximas a 25°C e 50% de umidade. Por fim, foram confecionados os nanocompósitos PHBV/NCC4 e PHBV/NCC9, com a adição de 1% (m/m) de reforço, pelos processos de casting e eletrofiação, seguindo as condições de solubilidade e processamento estabelecidas no PE. A adição dos NCC nos nanocompósitos obtidos por casting não alterou a transparência dos filmes e proporcionou uma redução ... (Resumo completo, clicar acesso eletrônico abaixo)
The production of nanobiocomposites has grown in recent years considering the need to develop materials to replace those produced using raw materials derived from petroleum and that take a long time to degrade, damaging the environment. However, nanobiocomposites of PHBV/cellulose nanocrystals (CNC), were obtained by solvent casting and electrospinning. First of all, was determined the best sequence of chemical treatments to obtain cellulose from brazilian satintail, and the conditions were: alkali treatment with NaOH solution (5% w/w) at 75°C , followed by three stages of bleaching with H2O2/NaOH. Then, following a design of experiments (DOE) it was possible to determine the best conditions of acid hydrolysis to obtain the CNC: H2SO4 60% (w/w) at 60°C for 30 min (CNC4) and H2SO4 64% (w/w) at 35°C for 75 min (CNC9). Afterwards, other DOE was conducted to determine the most appropriate PHBV solubility and processing parameters, and the results obtained led to the choice of the following parameters: PHBV solution containing 5% (w/w) of polymer in solvent dimethylformamide and chloroform (ratio 22/78), solubilized at 50°C for 30h; casting at 153°C, and electrospinning with needle (20x10), drum rotation of 27 rpm, working distance of 10 cm and environmental conditions close to 25°C and 50% of moisture. Finally, the nanocomposites PHBV/NCC4 and PHBV/NCC9 were obtained with the addition of 1% (w/w) of reinforcement by casting and electrospinning process, following the solubility and processing conditions determined at DOE. The addition of CNC in the nanocomposites obtained by solvent casting did not change the transparency of the films and provided a significant decrease in the polymer crystallization temperature, mainly with the addition of CNC4, whereas for electrospun nanocomposites, provided a considerable improvement in process efficiency, by ... (Complete abstract click electronic access below)
Benini, Kelly Cristina Coelho de Carvalho. "Compósitos de nanocelulose / PHBV : manta microfibrilica por eletrofiação /." Guaratinguetá, 2015. http://hdl.handle.net/11449/123382.
Full textCoorientador: Maria Odila Hilário Cioffi
Banca: Mirabel Cerqueira Rezende
Banca: Maysa Furlan
Banca: Marcelo Ornaghi Orlandi
Banca: Heitor Luiz Ornaghi Júnior
Resumo: A produção de nanobiocompósitos tem crescido nos últimos anos considerando a necessidade no desenvolvimento de materiais que visam substituir aqueles produzidos com matéria-prima oriunda do petróleo e que demoram muito tempo para se degradarem, prejudicando o meio ambiente. Dentro deste contexto, foram confeccionados nanobiocompósitos de PHBV/nanocristais de celulose (NCC) por casting e eletrofiação. O desenvolvimento do trabalho consistiu inicialmente na determinação da melhor sequência de tratamentos químicos para a obtenção da celulose a partir do capim-sapê, e as condições determinadas foram: tratamento alcalino com solução de NaOH 5% (m/m), a 75°C, seguido por três etapas de branqueamento com H2O2/NaOH. Em seguida, foi realizado um planejamento de experimentos (PE) com o qual foi possível determinar as melhores condições de hidrólise ácida para a obtenção dos NCC, que foram: H2SO4 60% (m/m), a 60°C por 30 min (NCC4) e H2SO4 64% (m/m), a 35°C por 75 min (NCC9). Posteriormente, outro PE foi realizado para determinar os parâmetros mais adequados para a solubilidade e processamento do PHBV, e os resultados obtidos levaram à escolha dos seguintes parâmetros: solução de PHBV com 5% (m/m) de polímero em solventes dimetilformamida e clorofórmio (razão 22/78) solubilizados a 50°C por 30h, casting a 153°C e eletrofiação com agulha 20x10, rotação do tambor de 27 rpm, distância de trabalho de 10 cm, com condições ambientais próximas a 25°C e 50% de umidade. Por fim, foram confecionados os nanocompósitos PHBV/NCC4 e PHBV/NCC9, com a adição de 1% (m/m) de reforço, pelos processos de casting e eletrofiação, seguindo as condições de solubilidade e processamento estabelecidas no PE. A adição dos NCC nos nanocompósitos obtidos por casting não alterou a transparência dos filmes e proporcionou uma redução ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The production of nanobiocomposites has grown in recent years considering the need to develop materials to replace those produced using raw materials derived from petroleum and that take a long time to degrade, damaging the environment. However, nanobiocomposites of PHBV/cellulose nanocrystals (CNC), were obtained by solvent casting and electrospinning. First of all, was determined the best sequence of chemical treatments to obtain cellulose from brazilian satintail, and the conditions were: alkali treatment with NaOH solution (5% w/w) at 75°C , followed by three stages of bleaching with H2O2/NaOH. Then, following a design of experiments (DOE) it was possible to determine the best conditions of acid hydrolysis to obtain the CNC: H2SO4 60% (w/w) at 60°C for 30 min (CNC4) and H2SO4 64% (w/w) at 35°C for 75 min (CNC9). Afterwards, other DOE was conducted to determine the most appropriate PHBV solubility and processing parameters, and the results obtained led to the choice of the following parameters: PHBV solution containing 5% (w/w) of polymer in solvent dimethylformamide and chloroform (ratio 22/78), solubilized at 50°C for 30h; casting at 153°C, and electrospinning with needle (20x10), drum rotation of 27 rpm, working distance of 10 cm and environmental conditions close to 25°C and 50% of moisture. Finally, the nanocomposites PHBV/NCC4 and PHBV/NCC9 were obtained with the addition of 1% (w/w) of reinforcement by casting and electrospinning process, following the solubility and processing conditions determined at DOE. The addition of CNC in the nanocomposites obtained by solvent casting did not change the transparency of the films and provided a significant decrease in the polymer crystallization temperature, mainly with the addition of CNC4, whereas for electrospun nanocomposites, provided a considerable improvement in process efficiency, by ... (Complete abstract click electronic access below)
Doutor
Leimann, Fernanda Vitória. "Nanopartículas híbridas de polímero natural (PHBV)/polímero sintético." reponame:Repositório Institucional da UFSC, 2012. http://repositorio.ufsc.br/xmlui/handle/123456789/95203.
Full textMade available in DSpace on 2012-10-25T22:16:04Z (GMT). No. of bitstreams: 0
O uso de nanopartículas poliméricas como carreadores de fármacos tem sido investigado por aumentar a biodisponibilidade do fármaco e por permitir novas rotas de administração. Polímeros naturais apresentam elevada biodegradabilidade e biocompatibilidade, que são características importantes para estas aplicações biomédicas. No entanto, as propriedades dos polímeros naturais não são tão facilmente manipuláveis como a dos polímeros sintéticos. Neste contexto, nanopartículas blenda (misturas físicas) e híbridas (ligações covalentes entre os polímeros) de polímeros naturais e polímeros sintéticos podem ser uma alternativa interessante para modificação/controle da liberação de fármacos. Neste trabalho, a técnica de miniemulsificação/evaporação do solvente foi utilizada para preparar nanopartículas de PHBV (poli(hidroxibutirato-co-hidroxivalerato)) e nanopartículas blenda PHBV, PS (poliestireno) e P(S-co-MAA) (poli(estireno-co-ácido metacrílico)). O PHBV de massa molar reduzida também foi utilizado para preparar nanopartículas híbridas com PS e P(S-co-MAA) via polimerização em miniemulsão. Os resultados mostraram que o PHBV de baixa massa molar apresentou menor separação de fases em todos os casos, resultando na formação de partículas com morfologia tipo core-shell devido às diferentes tensões interfaciais entre os polímeros e a água. Em relação às nanopartículas híbridas, o aumento da concentração de PHBV levou à redução da taxa de reação e à diminuição da conversão final de monômero, indicando a possibilidade dos radicais de PS em crescimento terem reagido com as duplas ligações terminais formadas durante a redução de massa molar do PHBV. As nanopartículas de PHBV de maior massa molar apresentaram maior degradação por hidrólise. Quando comparadas à degradação de micropartículas de PHBV, as nanopartículas mostraram uma redução da massa molar muito mais rápida devido a sua maior área superficial. Nanopartículas blenda PHBV/PS apresentaram redução da massa molar desprezível após 50 dias de hidrólise, mostrando a possibilidade de modificação da degradação das nanopartículas. Progesterona foi encapsulada nas nanopartículas de PHBV, blenda PHBV/PS e híbridas PHBV/PS e PHBV/P(S-co-MAA). Não houve alteração nas cinéticas de polimerização em miniemulsão em função da adição de progesterona. As maiores eficiências de encapsulação obtidas foram para as nanopartículas de PHBV estabilizadas com lecitina e para as nanopartículas híbridas PHBV/P(Sco-MAA) (95 e 99%, respectivamente).
Nanoparticles composed by natural polymers have been used in controlled release systems due to their biodegradability and biocompatibility. The use of polymer blends or hybrid polymers (presenting covalent bonds between two or more polymers) composed by natural and synthetic polymers is an interesting alternative to modify release rates. In this work the miniemulsification/solvent evaporation technique was used to obtain PHBV (poli(hidroxibutirato-cohidroxivalerato)) nanoparticles as well as PHBV/PS (polystyrene) and PHBV/P(S-co-MAA) (poly(styrene-co-methacrylic acid)) polymer blend nanoparticles. The influence of the preparation method, PHBV molecular weight, surfactant type and concentration, costabilizer type and concentration on the nanoparticles diameter was evaluated. In the case of the blend nanoparticles the evaluated experimental parameters were PS and PHBV molecular weights, and the amount of each polymer. Low molecular weight PHBV showed enhanced compatibility in all cases resulting in the formation of core-shell particles as expected due to the interfacial tensions between the polymers and the water phase. Hybrid nanoparticles composed by PHBV and P(S-co-MAA) or PS were also obtained. The increase in the PHBV amount led to a decrease in the polymerization rates as well in the total monomer conversion suggesting that the growing PS radicals may be reacted with the terminal double bonds of the reduced molecular weight PBHV. The hydrolytic degradation of the PHBV nanoparticles were evaluated for different temperatures, pH and molecular weights showing that the higher the molecular weight the higher the degradation. Nanoparticles degraded faster than PHBV microparticles due to the increased specific surface area. PS/PHBV blend nanoparticles presented negligible molecular weight reduction even after 50 days demonstration that the presence of PF can be used to modify the degradation rates. Progesterone was encapsulated in the PHBV nanoparticles (pure, blend and hybrid polymers). The miniemulsion polymerization kinetics were not affected by the presence of progesterone. The higher encapsulation efficiencies were found in the case of lecithin stabilized pure PHBV nanoparticles as well as in the case of PHBV/P(S-co-MAA) hybrid nanoparticles (95 and 99%, respectively).
Sultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process andevaluation of the scaffolds." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703665.
Full textSultana, Naznin. "Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process and evaluation of the scaffolds." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703665.
Full textZubairi, Saiful Irwan. "Development of biomimetic PHB and PHBV scaffolds for a three dimensional (3-D) in vitro human leukaemia model." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11131.
Full textVidhate, Shailesh. "Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103405/.
Full textPassos, Thayse Marques [UNESP]. "Biodegradação de filmes de Polihidroxibutirato-co-hidroxivalerato (PHBV), polietileno de baixa densidade (PEBD) e blenda de PEBD/PHBV (70/30), com fungos específicos." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/95033.
Full textO aumento do consumo de materiais plásticos, no mundo todo, tem sido objeto de grande preocupação e especial atenção por parte da comunidade científica, no sentido de promover o desenvolvimento de materiais que, ao serem descartados sejam biodegradados em tempo mais curto, no meio ambiente. Os plásticos sintéticos mais utilizados atualmente são de difícil degradação, por serem hidrofóbicos e resistentes à ação de enzimas microbianas. Entretanto, o uso de materiais alternativos, tais como as blendas de polímeros biodegradável e sintético, pode minimizar o efeito danoso do descarte desses materiais em lixões e aterros sanitários, por serem suscetíveis à ação de micro-organismo. Este trabalho visou investigar a biodegradação dos filmes de PHBV (biodegradável), PEBD (polietileno de baixa densidade) e da blenda de PEBD/PHBV (70/30), empregando fungos específicos em meios de cultura sólido e líquido, utilizando metodologias como: Microscopia óptica (MO), Microscopia Eletrônica de Varredura (MEV) e Espectroscopia de Absorção no Infravermelho com Transformada de Fourier (FTIR). Os fungos Penicillium funiculosum e Paecilomyces variotii degradam eficientemente o PHBV, sendo que o primeiro degradou o polímero com formação de ácidos insaturados, fortes indicadores da biodegradação deste tipo de material. Além disso, estes fungos aderem significativamente à superfície do PE, mudando expressivamente sua morfologia. A blenda de PE/PHBV (70/30), é um material suscetível à ação destes fungos, tendo sofrido mudanças, inclusive, na sua cristalinidade. Nesta blenda ficou evidente também a ação de proteção do PE, que inibiu o acesso do fungo à fase do PHBV contido na mesma. No meio mineral completo houve consumo da fase amorfa e...
The increase in consumption of plastics in the world has been the subject of great concern and special attention from the scientific community, to promote the development of materials that are biodegradable in a shorter time when discarded in the environment. The most widely used synthetic plastics are hardly degraded, because they are hydrophobic and resistant to the action of microbial enzymes. However, the use of alternative materials, such as blends of biodegradable polymers and synthetic, can minimize the harmful effect of the disposal of these materials in dumps and landfills, because they are susceptible to the action of microorganisms. This work aims to investigate the biodegradation of PHBV films (biodegradable), LDPE (low density polyethylene) and blends of LDPE / PHBV (70/30), using specific fungi in culture media solid and liquid, employing methods such as optical microscopy (OM), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR). Penicillium funiculosum and Paecilomyces variotii degrade PHBV efficiently and the first one degraded the polymer producing insaturated acids, strong indicators of the biodegradation of this type of material. Besides that, they adhere significantly on PE surface, changing meaningly the morphology of these materials. The PE / PHBV (70/30) blend, is a material susceptible to the fungi action, having undergone changes, including in its crystallinity. It was also evident the protective action of the PE, preventing the access of the fungus to the PHBV phase contained in the blend. In the complete mineral medium there was a consumption of amorphous and crystalline phases (decrease and increase of carbonyl indices, respectively – FTIR) and in the incomplete mineral medium, the amorphous and crystalline phases were consumed, showing the efficiency of P. funiculosum... (Complete abstract click electronic access below)
Books on the topic "PHBV"
Adam, Sugayo Jawama. Dialog hutan Jawa: Mengurai makna filosofis PHBM. Yogyakarta: Pustaka Pelajar, 2007.
Find full textMarkel, A. J. PHEV energy storage and drive cycle impacts. [Golden, Colo.]: National Renewable Energy Laboratory, 2007.
Find full textSchubert, Peter. Molekulare Organisation des PHB-Operons und Charakterisierung des PHB-Synthasegens in Alcaligenes eutrophus. Göttingen: Unitext, 1991.
Find full textCourthiade, Marcel. Romske poslovice: Sar rromano ilo--nanaj p-i sasti phuv. Zagreb?]: Udruga za promicanje obrazovanja Roma u Republici Hrvatskoj "Kali Sara", 2012.
Find full textPHB practical handbook of curve design and generation. Boca Raton: CRC Press, 1994.
Find full textAffianto, Agus. Analisis biaya dan pendapatan dalam pengelolaan PHBM: Sebuah panduan perhitungan bagi-hasil. Bogor, Indonesia: Pustaka Latin, 2005.
Find full textGreat Britain. Office of Fair Trading., ed. The regulation of licensed taxi and PHV services in the UK. London: Great Britain, Office of Fair Trading, 2003.
Find full textPerhubungan, Indonesia Departemen. Instruksi Menteri Perhubungan nomor IM.8/UM.206/PHB-91 Tentang Pelaksanaan Hasil Rapat Kerja Tahun 1991. [Jakarta]: Departemen Perhubungan, 1991.
Find full textHari, Martopo, ed. Perancangan notasi relief (notrel) untuk pendidikan musik tunanetra: Tahap sosialisasi : laporan hasil PHB IX/2 tahun 2002. [Yogyakarta]: Fakultas Seni Pertunjukan, Institut Seni Indonesia Yogyakarta, 2002.
Find full textkelayak lautan kapal Keputusan Menteri Perhubungan no. KM.168/OT.002/Phb.-84 Tentang Organisasi dan Tata Kerja Kantor Lalu Lintas Angkutan Laut, no. KM.169/OT.002/Phb.-84 Tentang Organisasi dan Tata Kerja Kantor Pelabuhan, no. KM.170/OT.002/Phb.-84 Tentang Organisasi dan Tata Kerja Kantor Administrator Pelabuhan: Organisasi dan tata kerja kantor lalulintas angkutan laut. [Jakarta: s.n., 1987.
Find full textBook chapters on the topic "PHBV"
Şendil, Dilek, İhsan Gürsel, Donald L. Wise, and Vasıf Hasırcı. "Antibiotic Release from Biodegradable PHBV Microparticles." In Biomedical Science and Technology, 89–96. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5349-6_9.
Full textSultana, Naznin. "Biodegradable PHBV Polymer-Based Scaffolds for Bone Tissue Engineering." In Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering, 43–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34802-0_3.
Full textJavadi, Alireza, Srikanth Pilla, Shaoqin Gong, and Lih-Sheng Turng. "Biobased and Biodegradable PHBV-Based Polymer Blends and Biocomposites: Properties and Applications." In Handbook of Bioplastics and Biocomposites Engineering Applications, 372–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118203699.ch14.
Full textDuan, Bin, and Min Wang. "Immobilization of Heparin on Gelatin Modified Three-Dimensional Osteoconductive Ca-P/PHBV Nanocomposite Scaffolds." In Ceramic Transactions Series, 43–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470909898.ch5.
Full textTong, Ho Wang, and Min Wang. "Effects of Processing Parameters on the Morphology and Size of Electrospun PHBV Micro- and Nano-Fibers." In Advances in Composite Materials and Structures, 1233–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.1233.
Full textDuan, Bin, William W. Lu, and Min Wang. "Selective Laser Sintered Ca-P/PHBV Nanocomposite Scaffolds with Sustained Release of rhBMP-2 for Bone Tissue Engineering." In Advances in Bioceramics and Porous Ceramics IV, 37–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095263.ch5.
Full textYaacob, Noorulnajwa Diyana, Hanafi Ismail, and Sam Sung Ting. "Tensile, Thermal Properties, and Biodegradability Test of Paddy Straw Powder-Filled Polyhydroxybutyrate-3-Valerate (PHBV) Biocomposites: Acrylation Pretreatment." In Recycled Polymer Blends and Composites, 307–22. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37046-5_15.
Full textPanda, Pradeep Kumar, and Pranjyan Dash. "Preparation, Characterization, and Evaluation of Antibacterial Properties of Poly(3-Hydroxybutarate-Co-3-Hydroxyvalerate) (PHBV)-Based Films and Coatings." In Biopolymer-Based Films and Coatings, 291–308. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003303671-13.
Full textTurner, A., S. Zainuddin, D. Kodali, and S. Jeelani. "Characterization of Multi-walled Carbon Nanotube Reinforced into Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV)-Epoxidized Natural Rubber 50 (ENR50) Biofilms." In The Minerals, Metals & Materials Series, 736–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92381-5_70.
Full textBährle-Rapp, Marina. "PHB-Ester." In Springer Lexikon Kosmetik und Körperpflege, 423. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_7886.
Full textConference papers on the topic "PHBV"
Zhao, Haibin, and Xiangfang Peng. "The Effect of Nanoclay on the Rheological Properties of Polylactic Acid/Polyhydroxybutyrate-Valerate Blends." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9223.
Full textHossain, Mohammad K., Samira N. Shaily, Hadiya J. Harrigan, and Terrie Mickens. "Fabrication and Characterization of Bio-Based Poly Lactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blend With Nanoclay." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67813.
Full textPonjavic, Marijana, Ivana Malagurski, Ana Salevic-Jelic, Jelena Lazic, and Jasmina Nikodinovic-Runic. "UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.351p.
Full textGallot-Lavallee, O., and L. Heux. "Dielectric spectroscopy on a PHBV bio-polymer." In 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2013). IEEE, 2013. http://dx.doi.org/10.1109/ceidp.2013.6748275.
Full textResch, J., M. Kreutzbruck, and C. Bonten. "Modification of PHBV-blends with a biodegradable plasticizer." In FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028771.
Full textCiuprina, Florin, Laura Andrei, Sergiu Stoian, Raluca Gabor, and Denis Panaitescu. "Dielectric Response and Dynamic Mechanical Analysis of PHBV-TiO2 Nanocomposites." In 2020 IEEE 3rd International Conference on Dielectrics (ICD). IEEE, 2020. http://dx.doi.org/10.1109/icd46958.2020.9341988.
Full textJavadi, Alireza, Srikanth Pilla, Shaoqin Gong, Yottha Srithep, Jungjoo Lee, and Lih-Sheng Turng. "Processing and Characterization of Solid and Microcellular PHBV/Coir Fiber Composites." In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0422.
Full textChen, Haifeng, and Lingmei Guo. "Preparation of ZnS Modified PHBV Film by Chemical Bath Deposition Method." In International Conference on Chemical,Material and Food Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cmfe-15.2015.1.
Full textYuping Zhang, Yanyan Wang, Lanxin Lv, Shancheng Yan, Haitao Wang, Yong Zhang, Dan Zhu, Ningping Huang, and Zhongdang Xiao. "Cell affinity of PHBV thin films evaluated by a parallel plate flow chamber." In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068665.
Full textKuntanoo, K., S. Promkotra, and P. Kaewkannetra. "Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex." In 4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914254.
Full textReports on the topic "PHBV"
Duoba, Michael. Performance Validation of Advanced PHEV Vehicle. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1493414.
Full textDuoba, Michael. Performance Validation of Advanced PHEV Vehicle. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1493417.
Full textWeber, Adrienne M., and Karen R. Sikes. PHEV Market Introduction Workshop Summary Report. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/993772.
Full textBazzi, Abdullah, and Steven Barnhart. Advancing Transportation through Vehicle Electrification - PHEV. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1182581.
Full textHeinanen, J., F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group. RFC Editor, June 1999. http://dx.doi.org/10.17487/rfc2597.
Full textJacobson, V., K. Nichols, and K. Poduri. An Expedited Forwarding PHB. RFC Editor, June 1999. http://dx.doi.org/10.17487/rfc2598.
Full textRugh, J. Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/957994.
Full textAbas Goodarzi. Bi-Directional DC-DC Converter for PHEV Applications. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1035860.
Full textLi, Yan, Yuhao Luo, and Xin Lu. PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm. SAE International, March 2022. http://dx.doi.org/10.4271/2022-01-0739.
Full textDavie, B., A. Charny, J. C. R. Bennet, K. Benson, J. Y. Le, W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop Behavior). RFC Editor, March 2002. http://dx.doi.org/10.17487/rfc3246.
Full text