Journal articles on the topic 'Phi29 DNA Polymerase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phi29 DNA Polymerase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
del Prado, Santos, Lázaro, Salas, and de Vega. "The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site." Biomolecules 9, no. 11 (2019): 648. http://dx.doi.org/10.3390/biom9110648.
Full textSakatani, Yoshihiro, Ryo Mizuuchi, and Norikazu Ichihashi. "In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication." Protein Engineering, Design and Selection 32, no. 11 (2019): 481–87. http://dx.doi.org/10.1093/protein/gzaa011.
Full textKamtekar, Satwik. "Phi29 DNA polymerase: structure and sequencing." Acta Crystallographica Section A Foundations and Advances 75, a1 (2019): a139. http://dx.doi.org/10.1107/s010876731909860x.
Full textKrzywkowski, Tomasz, Malte Kühnemund, Di Wu, and Mats Nilsson. "Limited reverse transcriptase activity of phi29 DNA polymerase." Nucleic Acids Research 46, no. 7 (2018): 3625–32. http://dx.doi.org/10.1093/nar/gky190.
Full textTenaglia, Enrico, Yuki Imaizumi, Yuji Miyahara, and Carlotta Guiducci. "Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase." Chemical Communications 54, no. 17 (2018): 2158–61. http://dx.doi.org/10.1039/c7cc09609g.
Full textTorres, Leticia L., and Vitor B. Pinheiro. "Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase." Current Protocols in Chemical Biology 10, no. 2 (2018): e41. http://dx.doi.org/10.1002/cpch.41.
Full textLi, Shasha, Su Liu, Yicheng Xu, et al. "Robust and highly specific fluorescence sensing of Salmonella typhimurium based on dual-functional phi29 DNA polymerase-mediated isothermal circular strand displacement polymerization." Analyst 144, no. 16 (2019): 4795–802. http://dx.doi.org/10.1039/c9an00843h.
Full textXu, Yun, Simon Gao, John F. Bruno, Benjamin J. Luft, and John J. Dunn. "Rapid detection and identification of a pathogen’s DNA using Phi29 DNA polymerase." Biochemical and Biophysical Research Communications 375, no. 4 (2008): 522–25. http://dx.doi.org/10.1016/j.bbrc.2008.08.082.
Full textJohne, Reimar, Hermann Müller, Annabel Rector, Marc van Ranst, and Hans Stevens. "Rolling-circle amplification of viral DNA genomes using phi29 polymerase." Trends in Microbiology 17, no. 5 (2009): 205–11. http://dx.doi.org/10.1016/j.tim.2009.02.004.
Full textKesici, Merve-Zeynep, Philip Tinnefeld, and Andrés Manuel Vera. "A simple and general approach to generate photoactivatable DNA processing enzymes." Nucleic Acids Research 50, no. 6 (2021): e31-e31. http://dx.doi.org/10.1093/nar/gkab1212.
Full textLieberman, Kate R., Gerald M. Cherf, Michael J. Doody, Felix Olasagasti, Yvette Kolodji, and Mark Akeson. "Processive Replication of Single DNA Molecules in a Nanopore Catalyzed by phi29 DNA Polymerase." Journal of the American Chemical Society 132, no. 50 (2010): 17961–72. http://dx.doi.org/10.1021/ja1087612.
Full textTaniguchi, R., C. Masaki, Y. Murashima, et al. "DNA amplification using phi29 DNA polymerase validates gene polymorphism analysis from buccal mucosa samples." Journal of Prosthodontic Research 55, no. 3 (2011): 165–70. http://dx.doi.org/10.1016/j.jpor.2010.12.001.
Full textPovilaitis, Tadas, Gediminas Alzbutas, Rasa Sukackaite, Juozas Siurkus, and Remigijus Skirgaila. "In vitroevolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique." Protein Engineering, Design and Selection 29, no. 12 (2016): 617–28. http://dx.doi.org/10.1093/protein/gzw052.
Full textBerman, Andrea J., Satwik Kamtekar, Jessica L. Goodman, et al. "Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases." EMBO Journal 26, no. 14 (2007): 3494–505. http://dx.doi.org/10.1038/sj.emboj.7601780.
Full textManrao, Elizabeth A., Ian M. Derrington, Andrew H. Laszlo, et al. "Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase." Nature Biotechnology 30, no. 4 (2012): 349–53. http://dx.doi.org/10.1038/nbt.2171.
Full textDean, F. B. "Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification." Genome Research 11, no. 6 (2001): 1095–99. http://dx.doi.org/10.1101/gr.180501.
Full textKim, Subin, and Ja Yil Lee. "Study on biophysical properties of Phi29 DNA polymerase using a novel single-molecule imaging technique DNA curtain." Biophysical Journal 122, no. 3 (2023): 356a. http://dx.doi.org/10.1016/j.bpj.2022.11.1972.
Full textLiang, Jingjing, Jiaqi Zhou, Jianxi Tan, Zefeng Wang, and Le Deng. "Aptamer-Based Fluorescent Determination of Salmonella paratyphi A Using Phi29-DNA Polymerase-Assisted Cyclic Amplification." Analytical Letters 52, no. 6 (2018): 919–31. http://dx.doi.org/10.1080/00032719.2018.1505901.
Full textSato, M. "Repeated GenomiPhi, phi29 DNA polymerase-based rolling circle amplification, is useful for generation of large amounts of plasmid DNA." Nucleic Acids Symposium Series 48, no. 1 (2004): 147–48. http://dx.doi.org/10.1093/nass/48.1.147.
Full textGao, Yaping, Yun He, Liyi Chen, et al. "Chimeric Phi29 DNA polymerase with helix–hairpin–helix motifs shows enhanced salt tolerance and replication performance." Microbial Biotechnology 14, no. 4 (2021): 1642–56. http://dx.doi.org/10.1111/1751-7915.13830.
Full textLagunavicius, A., Z. Kiveryte, V. Zimbaite-Ruskuliene, T. Radzvilavicius, and A. Janulaitis. "Duality of polynucleotide substrates for Phi29 DNA polymerase: 3'->5' RNase activity of the enzyme." RNA 14, no. 3 (2008): 503–13. http://dx.doi.org/10.1261/rna.622108.
Full textChen, Anyi, Guo-Feng Gui, Ying Zhuo, Ya-Qin Chai, Yun Xiang, and Ruo Yuan. "Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection." Analytical Chemistry 87, no. 12 (2015): 6328–34. http://dx.doi.org/10.1021/acs.analchem.5b01168.
Full textNiel, Christian, Leonardo Diniz-Mendes, and Sylvie Devalle. "Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup." Journal of General Virology 86, no. 5 (2005): 1343–47. http://dx.doi.org/10.1099/vir.0.80794-0.
Full textWang, Yuhan, Jiaxuan Xiao, Xiaona Lin, et al. "A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification." Biosensors 13, no. 8 (2023): 761. http://dx.doi.org/10.3390/bios13080761.
Full textTruniger, V. "A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide." Nucleic Acids Research 30, no. 7 (2002): 1483–92. http://dx.doi.org/10.1093/nar/30.7.1483.
Full textZhu, Qiang, Ting Fang, Yijun Zhou, et al. "Effect of phi29 polymerase-based multiple strand displacement whole genome amplification on the proportion in DNA mixtures." Forensic Science International: Genetics Supplement Series 7, no. 1 (2019): 841–42. http://dx.doi.org/10.1016/j.fsigss.2019.10.197.
Full textGadkar, Vijay, and Matthias C. Rillig. "Application of Phi29 DNA polymerase mediated whole genome amplification on single spores of arbuscular mycorrhizal (AM) fungi." FEMS Microbiology Letters 242, no. 1 (2005): 65–71. http://dx.doi.org/10.1016/j.femsle.2004.10.041.
Full textMillion, Matthieu, Maxime Gaudin, Cléa Melenotte, et al. "Metagenomic Analysis of Microdissected Valvular Tissue for Etiological Diagnosis of Blood Culture–Negative Endocarditis." Clinical Infectious Diseases 70, no. 11 (2019): 2405–12. http://dx.doi.org/10.1093/cid/ciz655.
Full textTakahashi, Hirokazu, Hiroyuki Yamazaki, Satoshi Akanuma, et al. "Preparation of Phi29 DNA Polymerase Free of Amplifiable DNA Using Ethidium Monoazide, an Ultraviolet-Free Light-Emitting Diode Lamp and Trehalose." PLoS ONE 9, no. 2 (2014): e82624. http://dx.doi.org/10.1371/journal.pone.0082624.
Full textSato, Masahiro, Masato Ohtsuka, and Yuhsuke Ohmi. "Usefulness of repeated GenomiPhi, a phi29 DNA polymerase-based rolling circle amplification kit, for generation of large amounts of plasmid DNA." Biomolecular Engineering 22, no. 4 (2005): 129–32. http://dx.doi.org/10.1016/j.bioeng.2005.05.001.
Full textde Vega, M., J. M. Lazaro, M. Salas, and L. Blanco. "Primer-terminus stabilization at the 3′-5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases." EMBO Journal 15, no. 5 (1996): 1182–92. http://dx.doi.org/10.1002/j.1460-2075.1996.tb00457.x.
Full textKim, Min-Soo, Eun-Jin Park, Seong Woon Roh, and Jin-Woo Bae. "Diversity and Abundance of Single-Stranded DNA Viruses in Human Feces." Applied and Environmental Microbiology 77, no. 22 (2011): 8062–70. http://dx.doi.org/10.1128/aem.06331-11.
Full textSakatani, Yoshihiro, Norikazu Ichihashi, and Tetsuya Yomo. "2P262 Establishment of a self-replication system using phi29 DNA polymerase(20. Origin of life & Evolution,Poster)." Seibutsu Butsuri 54, supplement1-2 (2014): S238. http://dx.doi.org/10.2142/biophys.54.s238_4.
Full textYe, Yan, Yao Lin, Zilin Chi, et al. "Rolling circle amplification (RCA) -based biosensor system for the fluorescent detection of miR-129-2-3p miRNA." PeerJ 10 (October 24, 2022): e14257. http://dx.doi.org/10.7717/peerj.14257.
Full textWu, Bingyun, Hiroyuki Kurokochi, and Taizo Hogetsu. "Development of 12 microsatellite markers in Euptelea polyandra by a random tailed genome-walking method using Phi29 DNA polymerase." Conservation Genetics Resources 1, no. 1 (2009): 59–61. http://dx.doi.org/10.1007/s12686-009-9014-y.
Full textTaniguchi, Ryoji, Chihiro Masaki, Yuhi Murashima, et al. "Erratum to “DNA amplification using phi29 DNA polymerase validates gene polymorphism analysis from buccal mucosa samples” [J. Prosthodont. Res. 55 (2011) 165–170]." Journal of Prosthodontic Research 55, no. 4 (2011): 266. http://dx.doi.org/10.1016/j.jpor.2011.08.001.
Full textLagunavicius, A., E. Merkiene, Z. Kiveryte, et al. "Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA." RNA 15, no. 5 (2009): 765–71. http://dx.doi.org/10.1261/rna.1279909.
Full textPan, Xinghua, Alexander Eckehart Urban, Dean Palejev, et al. "A procedure for highly specific, sensitive, and unbiased whole-genome amplification." Proceedings of the National Academy of Sciences 105, no. 40 (2008): 15499–504. http://dx.doi.org/10.1073/pnas.0808028105.
Full textAlsmadi, Osama, Fadi Alkayal, Dorota Monies, and Brian F. Meyer. "Specific and complete human genome amplification with improved yield achieved by phi29 DNA polymerase and a novel primer at elevated temperature." BMC Research Notes 2, no. 1 (2009): 48. http://dx.doi.org/10.1186/1756-0500-2-48.
Full textEisenbrandt, R. "Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein." Nucleic Acids Research 30, no. 6 (2002): 1379–86. http://dx.doi.org/10.1093/nar/30.6.1379.
Full textKnierim, D., and E. Maiss. "Application of Phi29 DNA polymerase in identification and full-length clone inoculation of tomato yellow leaf curl Thailand virus and tobacco leaf curl Thailand virus." Archives of Virology 152, no. 5 (2007): 941–54. http://dx.doi.org/10.1007/s00705-006-0914-9.
Full textLu, Na, Junji Li, Changwei Bi, et al. "ChimeraMiner: An Improved Chimeric Read Detection Pipeline and Its Application in Single Cell Sequencing." International Journal of Molecular Sciences 20, no. 8 (2019): 1953. http://dx.doi.org/10.3390/ijms20081953.
Full textJung, S., M. Reichenbach, R. Fries, et al. "316 GENOMIC EVALUATION OF BOVINE EMBRYOS WITHIN 24 HOURS." Reproduction, Fertility and Development 27, no. 1 (2015): 247. http://dx.doi.org/10.1071/rdv27n1ab316.
Full text"5198543 Phi29 DNA polymerase." Biotechnology Advances 12, no. 1 (1994): 127. http://dx.doi.org/10.1016/0734-9750(94)90402-2.
Full text"5001050 PH phi29 DNA polymerase." Biotechnology Advances 9, no. 3 (1991): 445. http://dx.doi.org/10.1016/0734-9750(91)90880-5.
Full textZhang, Jia, Xiaolu Su, Yefei Wang, et al. "Improved single-cell genome amplification by a high-efficiency phi29 DNA polymerase." Frontiers in Bioengineering and Biotechnology 11 (June 29, 2023). http://dx.doi.org/10.3389/fbioe.2023.1233856.
Full textNelson, John R. "Random‐Primed, Phi29 DNA Polymerase‐Based Whole Genome Amplification." Current Protocols in Molecular Biology 105, no. 1 (2014). http://dx.doi.org/10.1002/0471142727.mb1513s105.
Full textZhang, Jia, Xiaolu Su, Yefei Wang, et al. "Corrigendum: Improved single-cell genome amplification by a high-efficiency phi29 DNA polymerase." Frontiers in Bioengineering and Biotechnology 11 (August 28, 2023). http://dx.doi.org/10.3389/fbioe.2023.1263634.
Full textZhang, Xi, Jingjing Chen, Pengfei Jiang, et al. "A Phi29-based unbiased exponential amplification and genotyping approach improves pathogen detection in tick samples." Frontiers in Veterinary Science 9 (November 7, 2022). http://dx.doi.org/10.3389/fvets.2022.1025911.
Full textTsuruta, Haruka, Yuina Sonohara, Kosuke Tohashi, Narumi Aoki Shioi, Shigenori Iwai, and Isao Kuraoka. "Effects of acetaldehyde-induced DNA lesions on DNA metabolism." Genes and Environment 42, no. 1 (2020). http://dx.doi.org/10.1186/s41021-019-0142-7.
Full text