Academic literature on the topic 'Phlebotomus papatasi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phlebotomus papatasi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phlebotomus papatasi"
DILLON, R. J., and P. LANE. "Bloodmeal digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni." Medical and Veterinary Entomology 7, no. 3 (July 1993): 225–32. http://dx.doi.org/10.1111/j.1365-2915.1993.tb00681.x.
Full textSamie, M., K. R. Wallbanks, J. S. Moore, and D. H. Molyneux. "Glycosidase activity in the sandfly Phlebotomus papatasi." Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 96, no. 3 (January 1990): 577–79. http://dx.doi.org/10.1016/0305-0491(90)90059-3.
Full textTalbi, Fatima Zahra, Chafika Faraj, Fouad EL-Akhal, Fatiha El Khayyat, Driss Chenfour, Abdellatif Janati Idrissi, and Abdelhakim El Ouali Lalami. "Diversity and Dynamics of Sand Flies (Diptera: Psychodidae) of Two Cutaneous Leishmaniasis Foci in the Fes-Boulemane Region of Northern Morocco." International Journal of Zoology 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/497169.
Full textMerchant, Austin, Tian Yu, Jizhe Shi, and Xuguo Zhou. "Development of a Diagnostic Marker for Phlebotomus papatasi to Initiate a Potential Vector Surveillance Program in North America." Insects 9, no. 4 (November 12, 2018): 162. http://dx.doi.org/10.3390/insects9040162.
Full textWaitumbi, John, and Alon Warburg. "Phlebotomus papatasi Saliva Inhibits Protein Phosphatase Activity and Nitric Oxide Production by Murine Macrophages." Infection and Immunity 66, no. 4 (April 1, 1998): 1534–37. http://dx.doi.org/10.1128/iai.66.4.1534-1537.1998.
Full textVOLF, P., and I. ROHOUšOVÁ. "Species-specific antigens in salivary glands of phlebotomine sandflies." Parasitology 122, no. 1 (January 2001): 37–41. http://dx.doi.org/10.1017/s0031182000007046.
Full textPENER, H., and A. WILAMOVSKY. "Base-line susceptibility of Phlebotomus papatasi to insecticides." Medical and Veterinary Entomology 1, no. 2 (April 1987): 147–49. http://dx.doi.org/10.1111/j.1365-2915.1987.tb00335.x.
Full textPapadopoulos, Christos, Panagiotis A. Karas, Sotirios Vasileiadis, Panagiota Ligda, Anastasios Saratsis, Smaragda Sotiraki, and Dimitrios G. Karpouzas. "Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies." Pathogens 9, no. 6 (May 29, 2020): 428. http://dx.doi.org/10.3390/pathogens9060428.
Full textEl-Sayed, S., J. Hemingway, and R. P. Lane. "Susceptibility baselines for DDT metabolism and related enzyme systems in the sandfly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae)." Bulletin of Entomological Research 79, no. 4 (November 1989): 679–84. http://dx.doi.org/10.1017/s0007485300018836.
Full textEl Sawaf, B. M., N. S. Mansour, S. M. El Said, S. Daba, F. G. Youssef, M. A. Kenawy, and J. C. Beier. "Feeding Patterns of Phlebotomus papatasi and Phlebotomus langeroni (Diptera: Psychodidae) in El Agamy, Egypt." Journal of Medical Entomology 26, no. 5 (September 1, 1989): 497–98. http://dx.doi.org/10.1093/jmedent/26.5.497.
Full textDissertations / Theses on the topic "Phlebotomus papatasi"
Sigle, Leah T. "Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/13140.
Full textDepartment of Entomology
Marcelo Ramalho-Ortigao
Sand flies (Diptera:Psychodidae) are vectors of parasites of the genus Leishmania transmitted to suitable vertebrate host during blood feeding. For blood feeding arthropods, including sand flies, blood meal digestion requires the secretion of inhibitory molecules, such as Kazal-type serine proteinase inhibitors that are involved in preventing the blood from coagulating within the mouthparts and the midgut. Previous studies have identified such molecules in mosquitoes, ticks, and triatomine bugs. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). We are interested in the role of these proteins as inhibitors of coagulation cascades, in addition to their potential effects on blood digestion in P. papatasi. Ppkzl1 is similar to thrombin and trypsin inhibitors in triatomines and mosquitoes and Ppkzl2 is similar to Kazal-type inhibitors in mosquitoes with unknown function. Analyses of expression profiles indicated that although both transcripts are expressed prior to blood feeding in the midgut of P. papatasi they are tightly regulated by the blood meal. Reverse genetics studies using RNAi-targeted knockdown of PpKzl1 and PpKzl2 by dsRNA injection did not result in a detectable effect on mRNA expression levels. Thus, we expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess activity against various serine proteinases. Recombinant PpKzl2 inhibited chymotrypsin at nanomolar levels and also inhibited thrombin and trypsin at micromolar levels, suggesting that native PpKzl2 is an active serine proteinase inhibitor and may regulate digestive enzymes and thrombin in the midgut. Leishmania development within the sand fly midgut is faced with several barriers that can severely impact the parasites. For transmission to occur, parasites must be able to overcome these barriers including digestive proteinases, escape from the peritrophic matrix, and midgut attachment. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sand fly midgut. Thus, targeting serine proteinase inhibitors may provide a new strategy to prevent transmission of Leishmania.
FIGUEIRÊDO, JÚNIOR Carlos Alberto Santiago. "Análise do polimorfismo do gene que codifica a proteína salivar SP15 em três populações do Oriente Médio de Phlebotomus papatasi (Diptera: Psychodidae), vetor da Leishmania major." Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/6797.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
As proteínas presentes na saliva dos flebotomíneos possuem uma grande importância na proteção contra parasitas do gênero Leishmania. Uma das proteínas identificadas, denominada de SP15, demonstrou ser responsável pela proteção contra a progressão da doença e aumento do tamanho da lesão em modelos animais. A elaboração de vacinas de múltiplos componentes com proteínas salivares pode ser uma forma viável para o desenvolvimento de vacinas anti-Leishmania. Partindo desta estratégia adotada para elaboração de vacinas, é necessário entender a variabilidade dos genes que codificam proteínas salivares e suas implicações nas respostas imunes dos humanos. Neste trabalho, investigamos a variabilidade genética de SP15 de populações naturais de Phlebotomus papatasi do Oriente Médio. Adicionalmente, associamos a variabilidade genética observada com a predição da estrutura secundária da proteína e possíveis epítopos de ligação a MHC classe II. Os resultados obtidos indicaram um baixo nível de variabilidade genética entre as populações oriundas do Oriente Médio, apesar da ocorrência de um grande número de haplótipos, onde alguns deles são compartilhados entre as populações distintas. Em conjunto, estas observações evidenciam a existência de fluxo gênico ou retenção de polimorfismo ancestral entre as populações e a ausência da seleção purificadora atuando sobre este gene. Para os preditos epítopos de MHC classe II, muitos foram identificados como possuindo sítios de mutação, mas pelo menos três epítopos identificados não apresentaram qualquer tipo de mutação, sugerindo que esta molécula apresenta-se moderadamente conservada e deve induzir respostas imunes uniformes nos humanos
Delinger, David. "Understanding the Mechanisms of Insecticide Resistance in Phlebotomus papatasi and Lutzoymia longipalpis Sand Flies (Diptera: Psychodidae: Phlebotominae)." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/5730.
Full textDoehl, Johannes. "Investigating the role of the Leishmania (Leishmania) major HASP and SHERP genes during metacyclogenesis in the sand fly vectors, Phlebotomus (Phlebotomus) papatasi and Ph. (Ph.) duboscqi." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4807/.
Full textVieira, Coutinho Abreu Gomes Iliano. "Molecular aspects of sand-fly-based vaccine development." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/9224.
Full textDepartment of Entomology
Marcelo Ramalho-Ortigao
The emergence and reemergence of vector-borne diseases pose significant threats to humans and other animals worldwide. Although vector control relies mostly on insecticides, the emergence of insecticide resistance urges for the development of new strategies to control the spread of such diseases. For sand fly-transmitted leishmaniasis, Transmission Blocking Vaccines (TBV) may constitute a feasible strategy to impair Leishmania transmission from infected to uninfected vertebrate hosts. Moreover, sand fly saliva-based vaccines represent an alternative or complementary approach as these vaccines protect different mammalian hosts against Leishmania. Based on the potential use of sand fly molecules as vaccines against leishmaniasis, we assessed the potential of Phlebotomus papatasi midgut secreted proteins as TBV candidates and the expression variability of sand fly salivary gland genes. Regarding the TBV approach, we took advantage of the RNA interference (RNAi) technique to evaluate the effects of knocking down P. papatasi midgut-specific genes on Leishmania major development within the sand fly midgut. Whereas peritrophin 1 (PpPer1) knock down led to increased Le. major load by 39%, knocking down chitinase 1 (PpChit1) reduced Le. major load in P. papatasi midguts by 63%. Thus, our data strongly suggest that PpChit1 constitutes a potential target for TBV approaches against Leishmania transmission in endemic areas. Concerning protective vaccines based on salivary gland secreted proteins, we searched for expression polymorphism in selected salivary gland genes in natural and colonized populations of P. papatasi. Significant differences in salivary gland gene expression were not only exhibited in P. papatasi specimens collected in different geographic habitats but also seasonal difference in gene expression was displayed by specimens belonging to the same population. As antigen dose is an important component of immune responses, different doses of salivary protein inoculated into host skin may interfere with vaccine protection. Thus, the efficacy of sand fly saliva-based vaccine upon exposure to different salivary protein doses must be evaluated before deployment in endemic areas. Our data also ruled out some biotic factors as responsible for fine-tuning the expression of such genes. Overall, this dissertation makes significant contribution to the development of sand fly-based vaccines against leishmaniasis.
Malta, Juliana. "Efeitos de antissoros específicos para proteínas associadas a matriz peritrófica, silenciamento gênico da quitinase 1 e morfologia do intestino médio durante a metamorfose de flebotomíneos." Universidade Federal de Viçosa, 2016. http://www.locus.ufv.br/handle/123456789/9222.
Full textMade available in DSpace on 2016-12-16T15:29:37Z (GMT). No. of bitstreams: 1 texto completo.pdf: 2828448 bytes, checksum: 513da0881e21261964c7b5d328b7b603 (MD5) Previous issue date: 2016-07-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Flebotomíneos (Diptera: Psychodidae: Phlebotominae) são importantes vetores das leishmanioses, doenças causadas por protozoários do gênero Leishmania, distribuídos em dois grandes gêneros de importância médica: Phlebotomus no Velho Mundo e Lutzomyia no Novo Mundo. Após a ingestão de sangue o bolo alimentar é envolto por uma matriz quitino-proteica, chamada matriz peritrófica (MP). Em uma infecção por Leishmania, o intestino do vetor tem papel crucial, pois, para se estabelecer, o protozoário deve escapar do espaço endoperitrófico e se fixar na parede do intestino para evitar sua eliminação durante a excreção. Nesse sentido, a MP funciona como barreira ao desenvolvimento do parasito, sendo um componente importante na competência vetorial de flebotomíneos. Neste trabalho foi estudado o efeito da alimentação com células sanguíneas reconstituídas com anti-soros específicos para duas proteínas associadas à MP, a quitinase PpChit1 e a peritrofina PpPer2, na morfologia da MP de fêmeas de Phebotomus papatasi. A MP foi avaliada por microscopia de luz (ML) e microscopia eletrônica de transmissão (MET) (24, 42–46, 48 e 72 h após a alimentação), microscopia de força atômica (MFA) (30 h após a alimentação) e microscopia confocal (WGA-FITC) (72 horas após a alimentação). Nesta mesma espécie, também foi estudado a inibição da expressão de PpChit1 pela técnica de RNA de interferência (RNAi) após a injeção de dsPpChit1 (24, 48, 72 e 96 h após a alimentação sanguínea). Adicionalmente, o desenvolvimento pós embrionário do intestino médio foi investigado nas seguintes fases/estágios: larvas de 4o instar com três dias (L4-3) e com cinco dias (L4-5) após a ecdise, pré-pupa, pupa 24 horas e 72 horas após início da metamorfose e adulto recém-emergido, nos flebotomíneos Lutzomyia longipalpis e P. papatasi. Amostras de intestinos médios dissecados de cada fase foram avaliados por microscopias de luz (ML), eletrônica de transmissão (MET) e fluorescência. Verificamos que a alimentação de fêmeas de P. papatasi com antisoros específicos para PpChit1 e PpPer1, levou a um aumento na espessura da MP 72 h após a alimentação, bem como um aumento na amplitude da rugosidade na superfície da MP 30 h após a alimentação. A detecção de quitina com WGA-FITC, identificou que 72 h após a alimentação com anti-PpChit1, o conteúdo de quitina associada a MP no intestino médio do inseto era maior que nos insetos alimentados com soro naïve. A alimentação com antisoros específicos contra as proteínas associadas a MP (PpChit1 e PpPer2) afetam a cinética de maturação e degradação da MP, evidenciando o papel dessas proteínas na estruturação da MP de P. papatasi. A injeção de dsPpChit1 levou a uma reducão nos níveis de transcritos em todos os horários analisados, sendo esses resultados o primeiro passo para contribuir futuramente para o entendimento do papel de PpChit1 na MP P. papatasi. As mudanças morfológicas no intestino médio das duas espécies tiveram início no quarto instar larval, no entanto, em P. papatasi o processo degenerativo das células epiteliais iniciou um pouco antes em L4-3 enquanto que em L. longipalpis em L4-5. Durante a metamorfose, células regerativas foram vistas na base do epitélio, nas duas espécies. Além disso, as marcações positivas para a histona fosforilada H3, em ambas, sugerem que as células regenerativas se dividem durante o processo de remodelamento do intestino médio em flebotomíneos. A histólise do epitélio intestinal larval se dá possivelmente por autofagia, pela presença de numerosos vacúolos autofágicos, bem como por marcações positivas para a proteína LC3, entretanto, a detecção de caspase-3 sugere que a apoptose possa acontecer durante o processo de troca do epitélio larval pelo do adulto. Finalmente, o estudo do remodelamento do intestino médio em P. papatasi e L. longipalpis mostrou de forma inédita que o processo é conservado nas duas espécies, se diferenciando apenas no tempo do início do processo degenerativo entre as duas espécies. Os conhecimentos relacionados as proteínas da MP, bem como ao desenvolvimento pós-embrionário do intestino médio em flebotomíneos, o qual tem papel fundamental na transmissão de Leishmania, são importantes para uma melhor compreensão do inseto vetor.
Sand flies (Diptera: Psychodidae: Phlebotominae) are vectors of Leishmaniasis, a disease caused by parasitic protozoa of the genus Leishmania. They are distributed in two large medical importance genus: Phlebotomus from the Old World, and Lutzomyia from the New World. Leishmania suprapilarian life cycle in the vector midgut begins when insect females intake infected blood with amastigotes forms from the vertebrate host. After the blood meal, the food bolus is surrounded by a chitin-protein layer, called peritrophic matrix (PM). Sand fly midgut plays a crucial role during a Leishmania infection. In order to survive and develop, Leishmania parasites must escape from endoperitrophic space and attach themselves in the intestinal epithelium, preventing excretion with the fecal pellets. The PM can act as a barrier to parasite development, working as a relevant component in the vector competence. This study investigated the effects of reconstituted blood cells feeding with specific antisera targeting two PM associated proteins, chitinase PpChit1 and peritrophin PpPer2 in the PM formation. The PM was studied under light (LM) and transmission electron (TEM) microscopies (24, 42-46 , 48 and 72 h after blood meal), under atomic force microscopy (AFM) (30 h after blood meal) and under confocal microscopy (WGA–FITC) (72 hours after blood meal) in Phlebotomus papatasi. PpChit1 knockdown was performed in P. papatasi by means RNA interference technique (RNAi) after dsPpChit1 injection (24, 48, 72 and 96 h after blood meal). Additionally, the post-embryonic development of the midgut was investigated in the following life-stages: 4th instar larvae three days (L4-3) and five days (L4-5) after molting, pré-pupae, pupae 24 hours and 72 hours, and newly emerged adult in Lutzomyia longipalpis and P. papatasi. Midgut samples from each stage were dissected and assessed by LM, TEM and immunofluorescence. P. papatasi females feeding with anti-PpChit1 and anti-PpPer1 had the PM thickness increased at 72 h after blood meal, as well as a PM roughnes’s amplitude increase at 30 hr after feeding. WGA-FITC staining indicates that PM chitin content on insect midgut was higher in treated individuals than those treated with naïve serum. The feeding of P. papatasi females with red blood cells reconstituted with antisera targeting PM associated proteins (PpChit1 and PpPer2) affected the PM maturation and degradation, indicating the role of these proteins on PM structure. Injection of dsPpChit1 led to significant decrease in corresponding mRNA levels. These results are the first step on contribution to understand PpChit1 role in P. papatasi PM. The midgut metamorphosis in of the two species begins in the 4th instar, however, in P. papatasi, epithelial cells degeneration started shortly, in L4-3, while in L. longipalpis it began in L4-5. Larval gut epithelium degeneration was intensified in pré-pupa in both species by the presence of numerous autophagic vacuoles. During metamorphosis, midgut remodeling occurs by differentiation of stem or regenerative cells to replace larval digestive cells. Regenerative cells were seen at the epithelium basal region in both species. Furthermore, the detection of phosphohistone H3- positive cells suggested that the stem cells can divide during the remodeling process of the midgut. Stem cells in proliferation and differentiation were seen forming the new digestive epithelium in the pupae. Larval midgut replacement possibly occurs by autophagy by the presence of numerous autophagic vacuoles, as well as by the detection of LC3-positive cells. Additionally, cells positive for caspase-3 suggested that the apoptosis may occur during the elimination of larval epithelium. Finally, the study of midgut remodeling in P. papatasi and L. longipalpis was showed for the first time, and this process is conserved in these species, differing only in the time of th beginning of the degenerative processof the midgut epithelium. The study of MP formation as well as the post-embryonic development of the midgut of sandflies represent important steps for a better vector biology understanding.
Book chapters on the topic "Phlebotomus papatasi"
Selmane, Schehrazad. "Stability Analysis of a Human–Phlebotomus papatasi–Rodent Epidemic Model." In Springer Proceedings in Mathematics & Statistics, 397–403. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12307-3_57.
Full textReady, P. D., D. F. Smith, R. Killick-Kendrick, and R. Ben-Ismail. "Squash Blotting Phlebotomus Papatasi to Estimate Rates of Infection by Leishmania Major." In Leishmaniasis, 823–24. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-1575-9_101.
Full textKarmaoui, Ahmed, and Siham Zerouali. "Relationships Between Climate Parameters and the Density of Phlebotomus papatasi, the Main Vector of Zoonotic Cutaneous Leishmaniasis." In Advances in Environmental Engineering and Green Technologies, 291–302. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7387-6.ch015.
Full textWoodruff, A. W., and S. G. Wright. "PHLEBOTOMUS FEVER (Sandfly Fever; Papatasi Fever; Three-day Fever)." In A Synopsis of Infectious and Tropical Diseases, 52–53. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-7236-0826-4.50019-3.
Full textReports on the topic "Phlebotomus papatasi"
Kassem, Hala A., David J. Fryauff, Magdi G. Shehata, and Bahira M. El Sawaf. Enzyme Polymorphism and Genetic Variability of One Colonized and Several Field Populations of Phlebotomus papatasi (Diptera: Psychodidae). Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada266319.
Full text