Academic literature on the topic 'Phone recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phone recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phone recognition"
Lin, Jhe-Syuan, and Wen-Shing Sun. "A Hidden Fingerprint Device on an Opaque Display Panel." Applied Sciences 10, no. 6 (March 23, 2020): 2188. http://dx.doi.org/10.3390/app10062188.
Full textZeng, Hong, Yidan Hu, Jin Fan, Haiyang Hu, Zhigang Gao, and Qiming Fang. "Arm Motion Recognition and Exercise Coaching System for Remote Interaction." Mobile Information Systems 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/9849720.
Full textYang, Gang, and Jia Ni Luo. "A Real-Time Face Recognition System for Android Smart Phone." Advanced Materials Research 756-759 (September 2013): 4006–10. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.4006.
Full textYousef, Rana Mohammad, Omar Adwan, and Murad Abu-Leil. "An Enhanced Mobile Phone Dialler Application for Blind and Visually Impaired People." International Journal of Engineering & Technology 2, no. 4 (November 14, 2013): 270. http://dx.doi.org/10.14419/ijet.v2i4.1101.
Full textWANG, KONGQIAO, YANMING ZOU, and HAO WANG. "1D BAR CODE READING ON CAMERA PHONES." International Journal of Image and Graphics 07, no. 03 (July 2007): 529–50. http://dx.doi.org/10.1142/s0219467807002805.
Full textHải Dương, Nguyễn, and Nguyễn Hồng Quang. "Vietnamese speech recognition on mobile phone." Journal of Science, Educational Science 60, no. 7A (2015): 180–88. http://dx.doi.org/10.18173/2354-1075.2015-0065.
Full textBalaraman, Mridul, Sorin Dusan, and James L. Flanagan. "Supplementary features for improving phone recognition." Journal of the Acoustical Society of America 116, no. 4 (October 2004): 2479. http://dx.doi.org/10.1121/1.4784901.
Full textKwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. "Activity recognition using cell phone accelerometers." ACM SIGKDD Explorations Newsletter 12, no. 2 (March 31, 2011): 74–82. http://dx.doi.org/10.1145/1964897.1964918.
Full textvan Alphen, Paul. "Phone recognition in continuous speech (Dutch)." Journal of the Acoustical Society of America 87, S1 (May 1990): S107. http://dx.doi.org/10.1121/1.2027812.
Full textXing, Jian, Miao Yu, Shupeng Wang, Yaru Zhang, and Yu Ding. "Automated Fraudulent Phone Call Recognition through Deep Learning." Wireless Communications and Mobile Computing 2020 (August 28, 2020): 1–9. http://dx.doi.org/10.1155/2020/8853468.
Full textDissertations / Theses on the topic "Phone recognition"
Olausson, Erik. "Face Recognition for Mobile Phone Applications." Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11850.
Full textAtt applicera ansiktsigenkänning direkt på en mobiltelefon är en utmanande uppgift, inte minst med tanke på den begränsade minnes- och processorkapaciteten samt den stora variationen med avseende på ansiktsuttryck, hållning och ljusförhållande i inmatade bilder.
Det är fortfarande långt kvar till ett färdigutvecklat, robust och helautomatiskt ansiktsigenkänningssystem för den här miljön. Men resultaten i det här arbetet visar att genom att plocka ut feature-värden från lokala regioner samt applicera en välgjord warpstrategi för att minska problemen med variationer i position och rotation av huvudet, är det möjligt att uppnå rimliga och användbara igenkänningsnivåer. Speciellt för ett halvautomatiskt system där användaren har sista ordet om vem personen på bilden faktiskt är.
Med ett galleri bestående av 85 personer och endast en referensbild per person nådde systemet en igenkänningsgrad på 60% på en svårklassificerad serie testbilder. Totalt 73% av gångerna var den rätta individen inom de fyra främsta gissningarna.
Att lägga till extra referensbilder till galleriet höjer igenkänningsgraden rejält, till nästan 75% för helt korrekta gissningar och till 83,5% för topp fyra. Detta visar att en strategi där inmatade bilder läggs till som referensbilder i galleriet efterhand som de identifieras skulle löna sig ordentligt och göra systemet bättre efter hand likt en inlärningsprocess.
Detta exjobb belönades med pris för "Bästa industrirelevanta bidrag" vid Svenska sällskapet för automatiserad bildanalys årliga konferens i Lund, 13-14 mars 2008.
Applying face recognition directly on a mobile phone is a challenging proposal due to the unrestrained nature of input images and limitations in memory and processor capabilities.
A robust, fully automatic recognition system for this environment is still a far way off. However, results show that using local feature extraction and a warping scheme to reduce pose variation problems, it is possible to capitalize on high error tolerance and reach reasonable recognition rates, especially for a semi-automatic classification system where the user has the final say.
With a gallery of 85 individuals and only one gallery image per individual available the system is able to recognize close to 60 % of the faces in a very challenging test set, while the correct individual is in the top four guesses 73% of the time.
Adding extra reference images boosts performance to nearly 75% correct recognition and 83.5% in the top four guesses. This suggests a strategy where extra reference images are added one by one after correct classification, mimicking an online learning strategy.
Qin, Yinghao. "The Smart Phone as a Mouse." The University of Waikato, 2006. http://hdl.handle.net/10289/2289.
Full textGhosh, Anubhab. "Normalizing Flow based Hidden Markov Models for Phone Recognition." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286594.
Full textUppgiften för fonemigenkänning är en grundläggande uppgift i taligenkänning och tjänar ofta en kritisk roll i benchmarkingändamål. Forskare har använt en mängd olika modeller som använts tidigare för att hantera denna uppgift genom att använda både generativa och diskriminerande inlärningssätt. Bland dem är generativa tillvägagångssätt som användning av Gaussian-blandnings modellbaserade dolda Markov-modeller alltid föredragna på grund av deras matematiska spårbarhet. Men användningen av generativa modeller som dolda Markov-modeller och dess hybridvarianter är inte längre på mode på grund av en stor lutning till diskriminerande inlärningsmetoder, som har visat sig fungera bättre. Den enda nackdelen är att dessa tillvägagångssätt inte alltid säkerställer matematisk spårbarhet eller konvergensgarantier i motsats till deras generativa motsvarigheter. Således var forskningsproblemet att undersöka om det kan finnas en process för att förstärka modelleringsförmågan hos generativa modeller med hjälp av ett slags neurala nätverksbaserade arkitekturer som samtidigt kunde visa sig matematiskt spårbart och uttrycksfullt. Normaliseringsflöden är en klass generativa modeller som nyligen har fått mycket uppmärksamhet inom området för densitetsberäkning och erbjuder en metod för exakt sannolikhetsberäkning och slutsats. I detta projekt användes några få varianter av Normaliserande flödesbaserade dolda Markov-modeller för uppgiften att fonemigenkänna i TIMIT-datasatsen. Det visade sig att dessa modeller och deras blandningsmodellvarianter överträffade klassiska generativa modellvarianter som Gaussiska blandningsmodeller. Ett beslutssmältningsstrategi med klassiska Gaussiska och Normaliserande flödesbaserade blandningar visade konkurrenskraftiga resultat jämfört med diskriminerande inlärningsmetoder. Ytterligare analys baserat på klasser av talsignaler utfördes för att jämföra de generativa modellerna som användes. Dessutom genomfördes en studie av robustheten hos dessa algoritmer till bullriga talförhållanden.
Stearns, Cameron P. cstearns. "A SYSTEM FOR CELL PHONE ANTI-THEFT THROUGH GAIT RECOGNITION." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1216.
Full textChou, Christine S. (Christine Susan). "Language identification through parallel phone recognition dc by Christine S. Chou." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34056.
Full textMohapatra, Prateeti. "Deriving Novel Posterior Feature Spaces For Conditional Random Field - Based Phone Recognition." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236784133.
Full textMohammed, Abdulmalik. "Obstacle detection and emergency exit sign recognition for autonomous navigation using camera phone." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/obstacle-detection-and-emergency-exit-sign-recognition-for-autonomous-navigation-using-camera-phone(e0224d89-e743-47a4-8c68-52f718457098).html.
Full textZhang, Zelun. "User mobility detection using foot force sensors and mobile phone GPS." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9116.
Full textWong, Kim-Yung Eddie. "Automatic spoken language identification utilizing acoustic and phonetic speech information." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/37259/1/Kim-Yung_Wong_Thesis.pdf.
Full textMartin, Terrence Lance. "Towards improved speech recognition for resource poor languages." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/35771/1/Terrence_Martin_Thesis.pdf.
Full textBooks on the topic "Phone recognition"
Manjunath, K. E. Multilingual Phone Recognition in Indian Languages. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80741-2.
Full textManjunath, K. E. Multilingual Phone Recognition in Indian Languages. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80741-2.
Full textE, Manjunath K. Multilingual Phone Recognition in Indian Languages. Springer International Publishing AG, 2021.
Find full textAboumerhi, Hassan, and Tariq M. Malik. Interscalene Catheters: Complications and Management. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190271787.003.0044.
Full textLittle, Max A. Machine Learning for Signal Processing. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198714934.001.0001.
Full textNass, Clifford. Voice Activated: Psychology and Design of Voice Interfaces for the Web, Phones, and Wireless. University of Chicago Press, 2001.
Find full textNass, Clifford. Voice Activated: Psychology and Design of Voice Interfaces for the Web, Phones, and Wireless. University of Chicago Press, 2001.
Find full textMorgan Wortham, Simon. Impossible Divisions: Fanon, Hegel and Psychoanalysis. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474429603.003.0002.
Full textBook chapters on the topic "Phone recognition"
Xie, Chunyu, Shangzhen Luan, Hainan Wang, and Baochang Zhang. "Gesture Recognition Benchmark Based on Mobile Phone." In Biometric Recognition, 432–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_48.
Full textRao, K. Sreenivasa, and Manjunath K.E. "Articulatory Features for Phone Recognition." In SpringerBriefs in Electrical and Computer Engineering, 17–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49220-9_3.
Full textLévy, Christophe, Georges Linarès, Pascal Nocera, and Jean-François Bonastre. "Embedded Mobile Phone Digit-Recognition." In Advances for In-Vehicle and Mobile Systems, 71–84. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-45976-9_7.
Full textLjolje, Andrej. "Phone Recognition Using High Order Phonotactic Constraints." In Speech Recognition and Understanding, 205–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76626-8_23.
Full textRao, K. Sreenivasa, and Manjunath K.E. "Excitation Source Features for Phone Recognition." In SpringerBriefs in Electrical and Computer Engineering, 47–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49220-9_4.
Full textManjunath, K. E. "Articulatory Features for Multilingual Phone Recognition." In SpringerBriefs in Speech Technology, 57–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80741-2_5.
Full textGaliano, Isabel, Francisco Casacuberta, and Emilio Sanchis. "Modelling Phone-Context in Spanish by Using SCMGGI Models." In Speech Recognition and Coding, 268–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57745-1_38.
Full textZhang, Yongliang, Bing Zhou, Hongtao Wu, and Conglin Wen. "2D Fake Fingerprint Detection Based on Improved CNN and Local Descriptors for Smart Phone." In Biometric Recognition, 655–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_72.
Full textHisham, P. M., D. Pravena, Y. Pardhu, V. Gokul, B. Abhitej, and D. Govind. "Improved Phone Recognition Using Excitation Source Features." In Advances in Intelligent Systems and Computing, 147–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23036-8_13.
Full textFeng, Yunfei, Carl K. Chang, and Hanshu Chang. "An ADL Recognition System on Smart Phone." In Inclusive Smart Cities and Digital Health, 148–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39601-9_13.
Full textConference papers on the topic "Phone recognition"
Dey, Abhishek, Wendy Lalhminghlui, Priyankoo Sarmah, K. Samudravijaya, S. R. Mahadeva Prasarma, Rohit Sinha, and S. R. Nirrnala. "Mizo Phone Recognition System." In 2017 14th IEEE India Council International Conference (INDICON). IEEE, 2017. http://dx.doi.org/10.1109/indicon.2017.8487726.
Full textGauvain, Jean-Luc, Abdel Messaoudi, and Holger Schwenk. "Language recognition using phone latices." In Interspeech 2004. ISCA: ISCA, 2004. http://dx.doi.org/10.21437/interspeech.2004-28.
Full textHnatiuc, Mihaela, Mirel Paun, and Joseph Dussart. "Path Recognition using Mobile Phone." In 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD). IEEE, 2019. http://dx.doi.org/10.1109/sped.2019.8906550.
Full textWalker, B. D., B. C. Lackey, J. S. Muller, and P. J. Schone. "Language-reconfigurable universal phone recognition." In 8th European Conference on Speech Communication and Technology (Eurospeech 2003). ISCA: ISCA, 2003. http://dx.doi.org/10.21437/eurospeech.2003-87.
Full textGauvain, Jean-Luc, and Lori F. Lamel. "Speaker-independent phone recognition using BREF." In the workshop. Morristown, NJ, USA: Association for Computational Linguistics, 1992. http://dx.doi.org/10.3115/1075527.1075608.
Full textBogomolov, Andrey, Bruno Lepri, and Fabio Pianesi. "Happiness Recognition from Mobile Phone Data." In 2013 International Conference on Social Computing (SocialCom). IEEE, 2013. http://dx.doi.org/10.1109/socialcom.2013.118.
Full textChen, Hongkai, Sazia Mahfuz, and Farhana Zulkernine. "Smart Phone Based Human Activity Recognition." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8983009.
Full textLamel, L. F., and J. L. Gauvain. "Cross-lingual experiments with phone recognition." In Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319353.
Full textMohamed, Abdel-rahman, and Geoffrey Hinton. "Phone recognition using Restricted Boltzmann Machines." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495651.
Full textLi, Xinjian, Juncheng Li, Florian Metze, and Alan W. Black. "Hierarchical Phone Recognition with Compositional Phonetics." In Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-1803.
Full textReports on the topic "Phone recognition"
Digalakis, V., M. Ostendorf, and J. R. Rohlicek. Fast Search Algorithms for Connected Phone Recognition Using the Stochastic Segment Model. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada459580.
Full textBilyk, Zhanna I., Yevhenii B. Shapovalov, Viktor B. Shapovalov, Anna P. Megalinska, Fabian Andruszkiewicz, and Agnieszka Dołhańczuk-Śródka. Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4403.
Full text