Academic literature on the topic 'Phonon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phonon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phonon"
Zhang, Xufeng, Chang-Ling Zou, Liang Jiang, and Hong X. Tang. "Cavity magnomechanics." Science Advances 2, no. 3 (March 2016): e1501286. http://dx.doi.org/10.1126/sciadv.1501286.
Full textDovlatova, Alla, and Dmitri Yerchuck. "Quantum Field Theory of Dynamics of Spectroscopic Transitions by Strong Dipole-Photon and Dipole-Phonon Coupling." ISRN Optics 2012 (December 12, 2012): 1–10. http://dx.doi.org/10.5402/2012/390749.
Full textP, Munkhbaatar. "Generation and Detection of Squeezed Phonon." Физик сэтгүүл 22, no. 449 (March 13, 2022): 7–10. http://dx.doi.org/10.22353/physics.v22i449.595.
Full textPrasher, Ravi S. "Mie Scattering Theory for Phonon Transport in Particulate Media." Journal of Heat Transfer 126, no. 5 (October 1, 2004): 793–804. http://dx.doi.org/10.1115/1.1795243.
Full textLe Dé, Brieuc, Christian J. Eckhardt, Dante M. Kennes, and Michael A. Sentef. "Cavity engineering of Hubbard U via phonon polaritons." Journal of Physics: Materials 5, no. 2 (April 1, 2022): 024006. http://dx.doi.org/10.1088/2515-7639/ac618e.
Full textCarmele, Alexander, and Stephan Reitzenstein. "Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory." Nanophotonics 8, no. 5 (April 23, 2019): 655–83. http://dx.doi.org/10.1515/nanoph-2018-0222.
Full textKuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto, and Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders." Advanced Materials Research 11-12 (February 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.
Full textRivera, Nicholas, Gilles Rosolen, John D. Joannopoulos, Ido Kaminer, and Marin Soljačić. "Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons." Proceedings of the National Academy of Sciences 114, no. 52 (December 12, 2017): 13607–12. http://dx.doi.org/10.1073/pnas.1713538114.
Full textHasegawa, Takayuki. "Characteristics of Coherent Optical Phonons in a Hexagonal YMnO3 Thin Film." Applied Sciences 9, no. 4 (February 18, 2019): 704. http://dx.doi.org/10.3390/app9040704.
Full textMurphy-Armando, F., É. D. Murray, I. Savić, M. Trigo, D. A. Reis, and S. Fahy. "Electronic heat generation in semiconductors: Non-equilibrium excitation and evolution of zone-edge phonons via electron–phonon scattering in photo-excited germanium." Applied Physics Letters 122, no. 1 (January 2, 2023): 012202. http://dx.doi.org/10.1063/5.0131157.
Full textDissertations / Theses on the topic "Phonon"
Iskandar, Abdo. "Phonon Heat Transport and Photon-phonon Interaction in Nanostructures." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0010.
Full textIn this dissertation, we investigate phonon heat transport and phonon interaction with optical elementary excitations in nanostructures. In the first chapter, we present an introduction to the physics of phonons and optical elementary excitations in nanostructured materials. The second chapter provides a detailed description of the samples growth and fabrication procedures and the various characterization techniques used. In the third chapter, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. In the fourth chapter, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. We demonstrate that the phonon spectrum of a bulk material can be altered by hybridization between confined phonon modes in nanostructures introduced on the surface of the material and the underlying bulk phonon modes. Shape and size of the nanostructures made on the surface of the substrate have strong effects on the phonon spectrum of the bulk material itself. In the fifth chapter, we demonstrate that at low temperatures (below 4 K) the nanowire specific heat exhibits a clear contribution from an essentially two-dimensional crystal. We also demonstrate that transitions from specular to diffusive elastic transmission and then from diffusive elastic to diffusive inelastic transmission occur at the interface between nanowires and a bulk substrate as temperature increases. Perspectives include the control of bulk material thermal properties via surface nanostructuring
Yatsui, T., and M. Ohtsu. "Dressed Photon-phonon Technology for Ultra Flat Surface." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35264.
Full textFung, Tsz Cheong. "Phonon magnonics." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:a36d494d-73c5-410a-82df-abd0117884e6.
Full textKOMIRENKO, SERGIY MYKHAYLOVYCH. "Phonons and phonon-related effects in prospective nanoscale semiconductor devices." NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20001030-145518.
Full textThe research was devoted to the theoretical investigation of lattice vibrations in low-dimensional heterostructures and bulk materials with strong polaronic coupling. The purpose of the research has been to develop the phonon theory for technologically-important materials such as nitrides of Ga and Al as well as to locate new phonon-related effects which can be utilized in artificially-created heterostructures. The electron-phonon interaction has been considered quantum mechanically.The main findings can be summarized briefly as follows: 1. Consideration of carrier-induced renormalization of acoustic phonon spectra in quantum wires revealed the possibility for the Peierls phase transition into a state with periodic lattice distortion and charge-density waves of macroscopic period in artificially-prepared structures. The phase diagram for this transition has been determined. An analytical dispersion relation for the coupled electron-phonon excitation has been derived.2. It is found that the drift of two-dimensional electrons in quantum wells can lead to efficient amplification (generation) of sub-THz coherent confined acoustic vibrations due to the Cerenkov effect when the velocity of the drifted electrons exceeds the sound velocity in the given medium. A theory has been developed to describe the confinement of acoustic modes propagating along the high-symmetry directions in cubic quantum wells.3. A theory of confinement of optical phonon modes in wurtzite quantum wells has been developed. A formalism has been derived for calculation of electron scattering rates in optically anisotropic (uniaxial) crystals and quantum wells. 4. From the comparison of the energy losses to the lattice as function of the carrier velocity obtained in frameworks of perturbative model and path-integral Thornber-Feynman approach it is found that perturbation theory can be applied for materials with intermediate polaronic coupling such a GaN and AlN. Moreover, the theoretical possibility of unique low-field runaway transport in these materials has been demonstrated.
Lehmann, Dietmar. "Phonon Spectroscopy and Low-Dimensional Electron Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1138734990743-55381.
Full textDie vorliegende Arbeit beschäftigt sich mit der Ausbreitung von akustischen Nichtgleichgewichtsphononen und deren Wechselwirkung mit Halbleiter-Nanostrukturen. Güte und Effizienz moderner Halbleiter-Bauelemente hängen wesentlich vom Verständnis der Wechselwirkung akustischer Phononen mit niederdimensionalen Elektronensystemen ab. Traditionelle Untersuchungsmethoden, wie die Messung der elektrischen Leitfähigkeit oder der Thermospannung, erlauben nur eingeschränkte Aussagen. Sie mitteln über die beteiligten Phononenmoden und eine Trennung der einzelnen Wechselwirkungsmechanismen ist nur näherungsweise möglich ist. Demgegenüber erlaubt die in der Arbeit diskutierte Methode der winkel- und zeitaufgelösten Phononen-Spektroskopie ein direktes Studium des Beitrags einzelner Phononenmoden, d.h. in Abhängigkeit von Wellenzahlvektor und Polarisation der Phononen. Im Mittelpunkt der Arbeit steht die Fragestellung, wie akustische Anisotropie und Ladungsträger-Confinement die Ergebnisse der winkel- und zeitaufgelösten Phononen-Spektroskopie beeinflussen und prägen. Dazu wird ein umfassendes theoretisches Modell zur Simulation von Phononen-Spektroskopie-Experimenten an niederdimensionalen Halbleitersystemen vorgestellt. Dieses erlaubt sowohl ein qualitatives Verständnis der ablaufenden physikalischen Prozesse als auch eine quantitative Analyse der Messergebnisse. Die Vorteile gegenüber anderen Modellen und Rechnungen liegen dabei in dem konsequenten Einbeziehen der akustischen Anisotropie, nicht nur für die Ausbreitung der Phononen, sondern auch für die Matrixelemente der Wechselwirkung, sowie eine saubere Behandlung des Confinements der Elektronen in den niederdimensionalen Systemen. Dabei werden die Grenzen weit verbreiteter Näherungsansätze für die Elektron-Phonon-Matrixelemente und das Elektronen-Confinement deutlich aufgezeigt. Für den quantitativen Vergleich mit realen Experimenten werden aber auch solche Größen, wie die endliche räumliche Ausdehnung von Phononenquelle und Detektor, die Streuung der Phononen an Verunreinigungen oder die Abschirmung der Elektron-Phonon-Kopplung durch die Elektron-Elektron-Wechselwirkung berücksichtigt.Im zweiten Teil der Arbeit wird der theoretische Apparat auf typische experimentelle Fragestellungen angewandt. Im Falle der Phonon-Drag-Experimente an GaAs/AlGaAs Heterostrukturen wird der durch akustische Nichtgleichgewichtsphononen in zwei- und eindimensionalen Elektronensystemen induzierte elektrische Strom (Phonon-Drag-Strom) als Funktion des Ortes der Phononenquelle bestimmt. Das in der Arbeit hergeleitete theoretische Modell kann die experimentellen Resultate für die Winkelabhängigkeit des Drag-Stromes sowohl für Messungen mit und ohne Magnetfeld qualitativ gut beschreiben. Außerdem wird der Einfluss unterschiedlicher Confinementmodelle und unterschiedlicher Wechselwirkungsmechanismen studiert. Dadurch ist es möglich, aus Phonon-Drag-Messungen Rückschlüsse auf die elektronischen und strukturellen Eigenschaften der niederdimensionalen Elektronensysteme zu ziehen (Fermivektor, effektive Masse, Elektron-Phonon-Kopplungskonstanten, Form des Confinementpotentials). Als weiteres Anwendungsbeispiel wird das Problem der Energierelaxation (aufgeheizter)zweidimensionaler Elektronensysteme in GaAs Heterostrukturen und Quantentrögen untersucht. Für Elektronentemperaturen unterhalb 50 K werden die Gesamtemissionsrate als Funktion der Temperatur und die winkelaufgelöste Emissionsrate (als Funktion der Detektorposition) berechnet. Für beide Größen wird erstmals eine gute Übereinstimmung zwischen Theorie und Experiment gefunden. Es zeigt sich, dass akustische Anisotropie und Abschirmungseffekte zu überraschenden neuen Ergebnissen führen können. Ein Beispiel dafür ist der unerwartet große Beitrag der mittels Deformationspotential-Wechselwirkung emittierten transversalen akustischen Phononen, der bei einer Emission der Phononen näherungsweise senkrecht zum zweidimensionalen System beobachtet werden kann
Chamberlain, Martyn Paul. "Electrons, phonons, coupled phonon-plasmons and their interactions in semiconductor heterostructures." Thesis, University of Essex, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254491.
Full textMoreira, Leandro Malard. "Raman spectroscopy of graphene:: probing phonons, electrons and electron-phonon interactions." Universidade Federal de Minas Gerais, 2009. http://hdl.handle.net/1843/ESCZ-7ZFGDY.
Full textDesde a identificação de uma ou poucas camadas de grafeno em um substrato em 2004, trabalhos intensivos tem sido feitos para se caracterizar esse novo material. Em particular, a Espectroscopia Raman Ressonante tem sido muito importante para elucidar propriedades físicas e químicas em sistemas de grafeno. A Espectroscopia Raman Ressonante também tem se mostrado como uma ferramenta importante para se estudar fônons, elétrons e interações elétron-fônon em grafeno. Nesta tese, ao usarmos diferentes energias de laser de excitação, nós obtivemos propriedades importantes sobre as estruturas eletrônicas e vibracionais para uma e duas camadas de grafeno. Para uma monocamada de grafeno, nós determinamos a dispersão de fônons perto do ponto de Dirac para o modo óptico transversal no plano (iTO) e para o modo acústico longitudinal no plano (iLA). Comparamos nossos resultados experimentais como cálculos teóricos recentes para a dispersao de fônons nas proximidades do ponto K. Para a bicamada de grafeno, nós obtivemos os parâmetros de estrutura eletrônica do modelo de Slonczewski-Weiss-McClure. Nossos resultados mostram que a bicamada de grafeno possue uma forte assimetria elétron-buraco, que por sua vez é mais forte que no grafite. Em experimentos aplicando uma tensão de porta, variamos o nível de Fermi em uma bicamada de grafeno, o que levou uma quebra de simetria, deixando assim ambos os modos de vibração simétricos (S) e anti-simétricos (AS) ativos em Raman. A dependência da energia e do amortecimento desses modos de fônons com a energia de Fermi é explicada através do acoplamento elétron-buraco intra- ou inter- banca. Nossos resultados experimentais deram suporte às previsões teóricas para interações elétron-fónon em uma bicamada de grafeno.
Persson, Jacob. "Magnon-Phonon Coupling." Thesis, Uppsala universitet, Materialteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-377297.
Full textLevard, Hugo. "Ingénierie phononique pour les cellules solaires à porteurs chauds." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066013/document.
Full textThis thesis deals with fundamental issues related to phonons in hot-carrier solar cells, athird generation photovoltaic technology. This concept aims at extracting photogeneratedcharge carriers before their reach a thermal equilibrium with the lattice, and exhibits a the-oretical efficiency close to thermodynamic limit. One of the main issue is to hinder carriercooling, which occurs through LO-phonon emission. In addition to the idea of screeningthe electron-phonon interaction, one approach consists in designing an absorber in which theLO-phonon has an intrinsic lifetime longer than what it is in conventional materials, en-hancing the rate of its reabsorption by the carriers. The LO-phonon decay and lifetimeis first investigated in semiconductors within density functional perturbation theory. Spe-cific criteria for relevant absorbing materials choosing, from a phonon point of view, arederived. A full study of the LO-phonon lifetime is performed on a singular material, andthe possibility to achieve the sufficient phononic requierements is discussed. Secondly, theabove-mentioned electron-phonon interaction is modelled in superlattices. The couplingstrength is related to the LO-phonon induced macroscopic electric field, which allows tostudy the directional dependence of the phonon emission. The latter reveals to differentlyaffect the dimensionality of the electronic and phononic interacting populations. Thisstudy calls for development of these structure in the framewok of hot-carrier solar cells
Wu, Yunhui. "Experimental Investigation of Size Effects on Surface Phonon Polaritons and Phonon Transport." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC012/document.
Full textThermal conduction becomes less efficient as structures scale down into submicron sizes since phonon-boundary scattering becomes predominant and impede phonons more efficiently than Umklapp scattering. Recent studies indicated that the surface phonon polaritons (SPhPs), which are the evanescent electromagnetic waves generated by the hybridation of the optical phonons and the photons and propagating at the surface of a polar dielectric material surface, potentially serve as novel heat carriers to enhance the thermal performance in micro- and nanoscale devices. We study the condition of SPhPs existing in a dielectric submicron film with a broad frequency range. The calculaton of SPhPs thermal conductivity based on Boltzmann transport equation (BTE) demonstrates that the heat flux carried by SPhPs exceeds the one carried by phonons. We also conduct a time-domain-thermal-reflectance (TDTR) measurement of $SiN$ submicron films and demonstrate that the thermal conductivity due to the SPhPs at high temperatures increases by decreasing the film thickness. The results presented in this thesis have potential applications in the field of heat transfer, thermal management, near-field radiation and polaritonics
Books on the topic "Phonon"
Sild, Olev, and Kristjan Haller, eds. Zero-Phonon Lines. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4.
Full textBron, Walter E., ed. Nonequilibrium Phonon Dynamics. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2501-7.
Full textE, Bron Walter, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Nonequilibrium phonon dynamics. New York: Plenum Press, 1985.
Find full textE, Bron Walter, and NATO Scientific Affairs Division, eds. Nonequilibrium phonon dynamics. New York: Plenum published in cooperation with NATO Scientific Affairs Division, 1985.
Find full textSun, Chang Q. Electron and Phonon Spectrometrics. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3176-7.
Full textShindé, Subhash L., and Gyaneshwar P. Srivastava, eds. Length-Scale Dependent Phonon Interactions. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8651-0.
Full textKress, W. Phonon dispersion curves, one-phonon densities of states and impurity vibrations of metallic systems. Karlsruhe: Fachinformationszentrum Karlsruhe, 1987.
Find full textMeissner, Michael, and Robert O. Pohl, eds. Phonon Scattering in Condensed Matter VII. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9.
Full textBook chapters on the topic "Phonon"
Böer, Karl W., and Udo W. Pohl. "Photon-Phonon Interaction." In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06540-3_11-1.
Full textBöer, Karl W., and Udo W. Pohl. "Photon–Phonon Interaction." In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-06540-3_11-2.
Full textBöer, Karl W., and Udo W. Pohl. "Photon–Phonon Interaction." In Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-06540-3_11-3.
Full textBöer, Karl W., and Udo W. Pohl. "Photon–Phonon Interaction." In Semiconductor Physics, 389–424. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69150-3_11.
Full textBöer, Karl W. "Photon-Phonon Interaction." In Survey of Semiconductor Physics, 280–302. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-9744-5_11.
Full textBöer, Karl W., and Udo W. Pohl. "Photon–Phonon Interaction." In Semiconductor Physics, 1–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-06540-3_11-4.
Full textBöer, Karl W., and Udo W. Pohl. "Photon–Phonon Interaction." In Semiconductor Physics, 429–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18286-0_11.
Full textWeik, Martin H. "phonon." In Computer Science and Communications Dictionary, 1265. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13959.
Full textSudhir, Vivishek. "Photon-Phonon Coupling: Cavity Optomechanics." In Springer Theses, 83–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69431-3_4.
Full textDugaev, Vitalii K., and Vladimir I. Litvinov. "Phonons and Electron–Phonon Interaction." In Modern Semiconductor Physics and Device Applications, 101–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-6.
Full textConference papers on the topic "Phonon"
Kim, Dasom, Jin Hou, Geon Lee, Ayush Agrawal, Sunghwan Kim, Hao Zhang, Di Bao, et al. "Nanoslot-Induced Ultrastrong Phonon-Photon and Phonon-Phonon Coupling in Hybrid Organic-Inorganic Perovskites." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676597.
Full textBergman, Leah, Mitra Dutta, Ki Wook Kim, Paul G. Klemens, Sergiy M. Komirenko, and Michael A. Stroscio. "Phonons, electron-phonon interactions, and phonon-phonon interactions in III-V nitrides." In Symposium on Integrated Optoelectronics, edited by Kong-Thon F. Tsen and Jin-Joo Song. SPIE, 2000. http://dx.doi.org/10.1117/12.381450.
Full textAbo, Shilan, Grzegorz Chimczak, Ravindra Chhajlany, Anna Kowalewska-Kudlaszyk, and Adam Miranowicz. "Hybrid photon-phonon blockade." In Quantum Technologies 2022, edited by Sara Ducci, Eleni Diamanti, Nicolas Treps, and Shannon Whitlock. SPIE, 2022. http://dx.doi.org/10.1117/12.2622111.
Full textHopkins, Patrick E., John C. Duda, and Pamela M. Norris. "Contributions of Anharmonic Phonon Interactions to Thermal Boundary Conductance." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44135.
Full textGu, Yunfeng, Zhonghua Ni, Minhua Chen, Kedong Bi, and Yunfei Chen. "The Phonon Thermal Conductivity of a Single-Layer Graphene From Complete Phonon Dispersion Relations." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39645.
Full textNomura, Masahiro. "Thermal transport by surface phonon polaritons in SiN nanofilms." In JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19p_a602_9.
Full textPrasher, Ravi S. "Scattering of Phonons by Nano and Micro Particles." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59347.
Full textStiller, Birgit, Moritz Merklein, and Benjamin J. Eggleton. "Short-scale photon-phonon interactions." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.th3b.1.
Full textDemos, S. G., J. M. Buchert, and R. R. Alfano. "Nonequilibrium phonon dynamics in forsterite." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wk2.
Full textRoberts, N. A., and D. G. Walker. "Phonon Transport in Asymmetric Sawtooth Nanowires." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44341.
Full textReports on the topic "Phonon"
Kim Bongsang, Patrick Edward Hopkins, Zayd C. Leseman, Drew F. Goettler, Mehmet F. Su, Ihab Fathy El-Kady, Charles M. Reinke, and Roy H. ,. III Olsson. Phonon manipulation with phononic crystals. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1039017.
Full textAubry, Sylvie, Thomas Aquinas Friedmann, John Patrick Sullivan, Diane Elaine Peebles, David H. Hurley, Subhash L. Shinde, Edward Stanley Piekos, and John Allen Emerson. Phonon engineering for nanostructures. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/984139.
Full textBron, W. E. Study of Transient Phonon Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada172691.
Full textArnoldus, Henk F., and Thomas F. George. Laser-Linewidth Effects on the Photon-Phonon Conversion Rate at a Gas-Solid Interface,. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada171469.
Full textEgami, T., Y. Petrov, R. J. McQueeney, G. Shirane, and Y. Endoh. Low temperature phonon anomalies in cuprates. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/639789.
Full textWolfer, W. G. Phonon Drag Dislocations at High Pressures. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/793838.
Full textEvans, Paul G., Kyle M. McElhinny, and Gokul Gopalakarishnan. Scattering Tools for Nanostructure Phonon Engineering. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590229.
Full textMohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada498465.
Full textBaowen, Li. Managing Phonon Transport by Core/Shell Nanowires. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570448.
Full textPlummer, Ward E. Enhanced Electron-Phonon Coupling at Metal Surfaces. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1073629.
Full text