Academic literature on the topic 'Phonon angular momentum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phonon angular momentum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phonon angular momentum"

1

Yu Hang, Xu Xi-Fang, Niu Qian, and Zhang Li-Fa. "Phonon angular momentum and chiral phonons." Acta Physica Sinica 67, no. 7 (2018): 076302. http://dx.doi.org/10.7498/aps.67.20172407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Zhihan, Wei Gao, Chunyuan Mu, and Hongwei Li. "Reversible orbital angular momentum photon–phonon conversion." Optica 3, no. 2 (2016): 212. http://dx.doi.org/10.1364/optica.3.000212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Sungjoon, and Bohm-Jung Yang. "Phonon Angular Momentum Hall Effect." Nano Letters 20, no. 10 (2020): 7694–99. http://dx.doi.org/10.1021/acs.nanolett.0c03220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krstovska, Danica, Eun Sang Choi та Eden Steven. "Giant Angular Nernst Effect in the Organic Metal α-(BEDT-TTF)2KHg(SCN)4". Magnetochemistry 9, № 1 (2023): 27. http://dx.doi.org/10.3390/magnetochemistry9010027.

Full text
Abstract:
We have detected a large Nernst effect in the charge density wave state of the multiband organic metal α-(BEDT-TTF)2KHg(SCN)4. We find that apart from the phonon drag effect, the energy relaxation processes that govern the electron–phonon interactions and the momentum relaxation processes that determine the mobility of the q1D charge carriers have a significant role in observing the large Nernst signal in the CDW state in this organic metal. The emphasised momentum relaxation dynamics in the low field CDW state (CDW0) is a clear indicator of the presence of a significant carrier mobility that
APA, Harvard, Vancouver, ISO, and other styles
5

Todorov, Tchavdar N., Daniel Dundas, Anthony T. Paxton, and Andrew P. Horsfield. "Nonconservative current-induced forces: A physical interpretation." Beilstein Journal of Nanotechnology 2 (October 27, 2011): 727–33. http://dx.doi.org/10.3762/bjnano.2.79.

Full text
Abstract:
We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalen
APA, Harvard, Vancouver, ISO, and other styles
6

Leckron, Kai, Alexander Baral, and Hans Christian Schneider. "Exchange scattering on ultrafast timescales in a ferromagnetic two-sublattice system." Applied Physics Letters 120, no. 10 (2022): 102407. http://dx.doi.org/10.1063/5.0080379.

Full text
Abstract:
We investigate ultrafast spin dynamics due to exchange, electron–phonon and Elliott–Yafet spin-flip scattering in a model with a simple band structure and ferromagnetically coupled electronic sublattices (or more generally, subsystems). We show that this incoherent model of electronic dynamics leads to sublattice magnetization changes in opposite directions after ultrashort-pulse excitation. This prominent feature on an ultrafast timescale is related to a transfer of energy and angular momentum between the subsystems due to exchange scattering. Our calculations illustrate a possible incoherent
APA, Harvard, Vancouver, ISO, and other styles
7

KOTA, V. K. B. "EIKONAL SCATTERING IN THE sdg INTERACTING BOSON MODEL: ANALYTICAL RESULTS IN THE SUsdg(3) LIMIT AND THEIR GENERALIZATIONS." Modern Physics Letters A 08, no. 11 (1993): 987–96. http://dx.doi.org/10.1142/s0217732393002464.

Full text
Abstract:
General expression for the representation matrix elements in the SU sdg(3) limit of the sdg interacting boson model (sdgIBM) is derived that determine the scattering amplitude in the eikonal approximation for medium energy proton-nucleus scattering when the target nucleus is deformed and it is described by the SU sdg(3) limit. The SU sdg(3) result is generalized to two important situations: (i) when the target nucleus ground band states are described as states arising out of angular momentum projection from a general single Kπ = 0+ intrinsic state in sdg space; (ii) for rotational bands built
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Zhanghui, and Lin-Wang Wang. "Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms." Science Advances 5, no. 6 (2019): eaau8000. http://dx.doi.org/10.1126/sciadv.aau8000.

Full text
Abstract:
Despite more than 20 years of development, the underlying physics of the laser-induced demagnetization process is still debated. We present a fast, real-time time-dependent density functional theory (rt-TDDFT) algorithm together with the phenomenological atomic Landau-Lifshitz-Gilbert model to investigate this problem. Our Hamiltonian considers noncollinear magnetic moment, spin-orbit coupling (SOC), electron-electron, electron-phonon, and electron-light interactions. The algorithm for time evolution achieves hundreds of times of speedup enabling calculation of large systems. Our simulations y
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Zhanghui, Jun-Wei Luo, and Lin-Wang Wang. "Revealing angular momentum transfer channels and timescales in the ultrafast demagnetization process of ferromagnetic semiconductors." Proceedings of the National Academy of Sciences 116, no. 39 (2019): 19258–63. http://dx.doi.org/10.1073/pnas.1907246116.

Full text
Abstract:
Ultrafast control of magnetic order by light provides a promising realization for spintronic devices beyond Moore’s Law and has stimulated intense research interest in recent years. Yet, despite 2 decades of debates, the key question of how the spin angular momentum flows on the femtosecond timescale remains open. The lack of direct first-principle methods and pictures for such process exacerbates the issue. Here, we unravel the laser-induced demagnetization mechanism of ferromagnetic semiconductor GaMnAs, using an efficient time-dependent density functional theory approach that enables the di
APA, Harvard, Vancouver, ISO, and other styles
10

Miedema, P. S., M. Beye, R. Könnecke, G. Schiwietz, and A. Föhlisch. "The angular- and crystal-momentum transfer through electron–phonon coupling in silicon and silicon-carbide: similarities and differences." New Journal of Physics 16, no. 9 (2014): 093056. http://dx.doi.org/10.1088/1367-2630/16/9/093056.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phonon angular momentum"

1

Bistoni, Oliviero. "Intrinsic vibrational angular momentum driven by non-adiabatic effects in non-collinear magnetic systems." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/328688.

Full text
Abstract:
In absence of external fields, vibrational modes of periodic systems are usually considered as linearly polarized and, as such, they do not carry angular momentum. Our work proves that non-adiabatic effects due to the electron-phonon coupling are time-reversal symmetry breaking interactions for the vibrational field in systems with non-collinear magnetism and large spin-orbit coupling. Since in these systems the deformation potential matrix elements are necessarily complex, a nonzero synthetic gauge field (Berry curvature) arises in the dynamic equations of the ionic motion. As a result, phono
APA, Harvard, Vancouver, ISO, and other styles
2

Géneaux, Romain. "Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS474/document.

Full text
Abstract:
Le moment angulaire est une quantité essentielle pour l'étude d'objets en interaction. Tout comme la matière, un rayonnement porte du moment angulaire. Il se décompose en deux composantes, moment angulaire de spin (MAS) et moment angulaire orbital (MAO). Chacune de ces composantes a des propriétés spécifiques et ont donné lieu à de nombreuses applications en utilisant de la lumière dans le domaine visible et infrarouge. Dans cette thèse, nous nous proposons d'étudier le comportement des deux types de moment angulaire de la lumière dans un processus très non-linéaire appelé génération d'harmoni
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Yuan-Pin. "Novel probes of angular momentum polarization." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.

Full text
Abstract:
New dynamical applications of quantum beat spectroscopy (QBS) to molecular dynamics are employed to probe the angular momentum polarization effects in photodissociation and molecular collisions. The magnitude and the dynamical behaviour of angular momentum alignment and orientation, two types of polarization, can be measured via QBS technique on a shot-by-shot basis. The first part of this thesis describes the experimental studies of collisional angular momentum depolarization for the electronically excited state radicals in the presence of the collider partners. Depolarization accompanies bot
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Siwei. "Photon Angular Momentum in Semi-classical Physics and Wave Propagation in Moving Medium." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1257.

Full text
Abstract:
Photon and atom interaction is considered as resonance between angular momentum and photon's magnetic field. With the similar approach in classical oscillator, the same mathematical method is used to model the process of photon absorption and emission. In addition, Michelson-Morley experiment, Fizeau experiment and Sagnac effect has implications for properties of wave propagation in moving medium. It is proposed for interferometric methods that capable of either measuring angular velocity or measuring velocity.
APA, Harvard, Vancouver, ISO, and other styles
5

Tkachenko, Georgiy. "Optical trapping and manipulation of chiral microspheres controlled by the photon helicity." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0102/document.

Full text
Abstract:
Exploiter le degré de liberté angulaire de la lumière pour contrôler les forces optiques ouvre une nouvelle voie pour la manipulation optique de systèmes matériels. Dans ce contexte, notre travail porte sur l’interaction lumière-matière en présence de chiralité, qu’elle soit matérielle ou ondulatoire. Expérimentalement, nous avons utilisé des gouttes de cristaux liquides cholestériques interagissant avec un ou plusieurs champs lumineux polarisés circulairement et nous avons apporté une description quantitative de nos observations. Notre principal résultat correspond à la démonstration que la p
APA, Harvard, Vancouver, ISO, and other styles
6

Maccalli, Stefania. "Development and testing of quasi-optical devices for Photon Orbital Angular Momentum manipulation at millimetre wavelengths." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/development-and-testing-of-quasioptical-devices-for-photon-orbital-angular-momentum-manipulation-at-millimetre-wavelengths(91ab3ac8-62c5-4d3a-b063-4d162d3b61a5).html.

Full text
Abstract:
It is well known that light can carry two different kind of angular momentum that together form the total angular momentum of photons. These two forms are the spin orbital angular momentum, associated with the circular polarisation of light, and the orbital angular momentum of light associated with a wavefront tilted with respect to the propagation axis. Any tilted wavefront generates an orbital component of the angular momentum but there are some special cases in which this property becomes particularly interesting. It is the case of optical vortices which form when the waveform is continuous
APA, Harvard, Vancouver, ISO, and other styles
7

Djordjevic, Ivan B. "Integrated Optics Modules Based Proposal for Quantum Information Processing, Teleportation, QKD, and Quantum Error Correction Employing Photon Angular Momentum." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/615122.

Full text
Abstract:
To address key challenges for both quantum communication and quantum computing applications in a simultaneous manner, we propose to employ the photon angular momentum approach by invoking the well-known fact that photons carry both the spin angular momentum (SAM) and the orbital angular momentum (OAM). SAM is associated with polarization, while OAM is associated with azimuthal phase dependence of the complex electric field. Given that OAM eigenstates are mutually orthogonal, in principle, an arbitrary number of bits per single photon can be transmitted. The ability to generate/analyze states w
APA, Harvard, Vancouver, ISO, and other styles
8

Chopinaud, Aurélien. "Atomes et vortex optiques : conversion de moments orbitaux de lumière en utilisant la transition à deux photons 5S-5D du rubidium." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS155/document.

Full text
Abstract:
Le moment orbital angulaire (OAM) de la lumière est une grandeur quantifiée associée à la phase d’un vortex optique et est actuellement une des variables explorées pour les technologies quantiques.Dans ce contexte, cette thèse étudie expérimentalement la conversion de vortex optiques par une vapeur de rubidium, via la transition Raman stimulée à deux photons 5S₁/₂ − 5D₅/₂. Quand les atomes sont soumis à deux lasers respectivement à 780 nm et 776 nm, ils génèrent des rayonnements cohérents, infrarouge à 5,23 μm et bleu à 420 nm. On examine le rayonnement bleu lorsque l’un des lasers ou les deux
APA, Harvard, Vancouver, ISO, and other styles
9

Dixon, Mark. "Studies of spin and charge momentum densities using Compton scattering." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vitullo, Dashiell. "Propagation of Photons through Optical Fiber: Spin-Orbit Interaction and Nonlinear Phase Modulation." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20708.

Full text
Abstract:
We investigate two medium-facilitated interactions between properties of light upon propagation through optical fiber. The first is interaction between the spin and intrinsic orbital angular momentum in a linear optical medium. This interaction gives rise to fine structure in the longitudinal momenta of fiber modes and manifests in rotational beating effects. We probe those beating effects experimentally in cutback experiments, where small segments are cut from the output of a fiber to probe the evolution of both output polarization and spatial orientation, and find agreement between theoretic
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phonon angular momentum"

1

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1935-, Allen L., Barnett S. M, and Padgett Miles J, eds. Optical angular momentum. Institute of Physics Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Twisted photons: Applications of light with orbital angular momentum. Wiley-VCH, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barnett, S. M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barnett, Stephen, Les Allen, and Miles Padgett. Optical Angular Momentum. Taylor & Francis Group, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phonon angular momentum"

1

Hamada, Masato. "Phonon Thermal Edelstein Effect." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamada, Masato. "Magnetoelectric Effect for Phonons." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamada, Masato. "Background." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamada, Masato. "Introduction." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamada, Masato. "Conclusion." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamada, Masato. "Conversion Between Spins and Mechanical Rotations." In Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Keller, Ole. "Photon Angular Momentum." In Quantum Theory of Near-Field Electrodynamics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17410-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loke, Vincent L. Y., Theodor Asavei, Simon Parkin, Norman R. Heckenberg, Halina Rubinsztein-Dunlop, and Timo A. Nieminen. "Driving Optical Micromachines with Orbital Angular Momentum." In Twisted Photons. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, Les, and Miles Padgett. "The Orbital Angular Momentum of Light: An Introduction." In Twisted Photons. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fickler, Robert. "Entanglement of High Angular Momenta." In Quantum Entanglement of Complex Structures of Photons. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22231-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phonon angular momentum"

1

Zhu, Zhihan, Liwen Sheng, Chunyuan Mu, and Wei Gao. "Orbital Angular Momentum in Photon-Phonon Coupling." In CLEO: QELS_Fundamental Science. OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.ftu3a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nemirovsky-Levy, Liat, Uzi Pereg, and Mordechai Segev. "Increasing Communication Rates Using Photonic Hyperentangled States." In Frontiers in Optics. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu5a.41.

Full text
Abstract:
We propose a mechanism for increasing transmission rate of quantum communication channels, by multiplexing spin and multiple orbital angular momentum states on a single photon, transmitting the photon, and demultiplexing them to different photons.
APA, Harvard, Vancouver, ISO, and other styles
3

Djordjevic, Ivan B., and Yequn Zhang. "Photon angular momentum based multidimensional quantum key distribution." In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tauchert, S. R., M. Volkov, D. Ehberger, et al. "Polarized Phonons Carry Angular Momentum in Ultrafast Demagnetization." In International Conference on Ultrafast Phenomena. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu2a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elias, Nicholas M. "Primum Non Torquere∗ - Photon Orbital Angular Momentum in Astronomy." In Propagation Through and Characterization of Distributed Volume Turbulence. OSA, 2013. http://dx.doi.org/10.1364/pcdvt.2013.ptu3f.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Franke-Arnold, Sonja. "Orbital angular momentum of photons, atoms, and electrons." In SPIE OPTO, edited by Jesper Glückstad, David L. Andrews, and Enrique J. Galvez. SPIE, 2013. http://dx.doi.org/10.1117/12.2002984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tang, Ruikai, Xiongjie Li, Wenjie Wu, Haifeng Pan, Heping Zeng, and E. Wu. "Quantum information interface for orbital angular momentum photons." In CLEO: Applications and Technology. OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jw2a.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Yongnan, Ling-Jun Kong, Zhi-Cheng Ren, Chenghou Tu, and Hui-Tian Wang. "Trajectory-based unveiling of angular momentum of photons." In Frontiers in Optics. OSA, 2014. http://dx.doi.org/10.1364/fio.2014.ftu1c.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Xiao, Dong Beom Kim, Virginia O. Lorenz, and Siddharth Ramachandran. "Shaping Biphoton Spectral Correlations with Orbital Angular Momentum Fiber Modes." In Quantum 2.0. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4b.1.

Full text
Abstract:
We leverage large channel-count optical fibers supporting orbital angular momentum (OAM) modes to show that near-infrared to telecom photon pairs can be engineered to have arbitrary correlations by choice of mode combinations.
APA, Harvard, Vancouver, ISO, and other styles
10

Jha, A. K., B. Jack, E. Yao, et al. "Fourier Relationship Between Angular Position and Orbital Angular Momentum of Entangled Photons." In Laser Science. OSA, 2008. http://dx.doi.org/10.1364/ls.2008.lthe2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!