To see the other types of publications on this topic, follow the link: Phonon.

Books on the topic 'Phonon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Phonon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Sild, Olev, and Kristjan Haller, eds. Zero-Phonon Lines. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bron, Walter E., ed. Nonequilibrium Phonon Dynamics. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2501-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Bron Walter, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Nonequilibrium phonon dynamics. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

E, Bron Walter, and NATO Scientific Affairs Division, eds. Nonequilibrium phonon dynamics. New York: Plenum published in cooperation with NATO Scientific Affairs Division, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nicholas, R. J. The magnetophonon effect. Oxford, England: Pergamon Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Chang Q. Electron and Phonon Spectrometrics. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3176-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gurevich, V. L. Transport in phonon systems. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shindé, Subhash L., and Gyaneshwar P. Srivastava, eds. Length-Scale Dependent Phonon Interactions. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8651-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kress, W. Phonon dispersion curves, one-phonon densities of states and impurity vibrations of metallic systems. Karlsruhe: Fachinformationszentrum Karlsruhe, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meissner, Michael, and Robert O. Pohl, eds. Phonon Scattering in Condensed Matter VII. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Anderson, Ansel C., and James P. Wolfe, eds. Phonon Scattering in Condensed Matter V. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82912-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kato, Takashi. Electron-phonon interactions in novel nanoelectronics. New York: Nova Science, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Hai-Peng, and Rui-Qin Zhang. Phonon Thermal Transport in Silicon-Based Nanomaterials. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2637-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

1933-, Challis L. J., ed. Electron-phonon interaction in low-dimensional structures. Oxford: Oxford University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

S, Hunklinger, Ludwig W. 1929-, Weiss G. 1952-, and International Conference on Phonon Scattering in Condensed Matter (6th : 1989 : Heidelberg, Germany), eds. Phonons '89: Proceedings of the third International Conference on Phonon Physics and the sixth International Conference on Phonon Scattering in Condensed Matter, Heidelberg, 21-25 August, 1989, Federal Republic of Germany. Singapore: World Scientific, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Torres, C. M. Sotomayor, J. P. Leburton, and Jordi Pascual. Phonons in semiconductor nanostructures. Dordrecht: Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

1949-, Leburton J. P., Pascual Jordi 1949-, Sotomayor Torres C. M, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Phonons in Semiconductor Nanostructures (1992 : San Felíu de Guixols, Spain), eds. Phonons in semiconductor nanostructures. Dordrecht: Kluwer Academic, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rizzi, Valerio. Real-Time Quantum Dynamics of Electron–Phonon Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96280-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aynajian, Pegor. Electron-Phonon Interaction in Conventional and Unconventional Superconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14968-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Oron-Carl, Matti. Electron-phonon coupling in single-walled carbon nanotubes. Karlsruhe, [Germany]: Forschungszentrum Karlsruhe, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

service), SpringerLink (Online, ed. Electron-Phonon Interaction in Conventional and Unconventional Superconductors. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

International Conference on Phonon Physics (4th 1995 Sapporo, Japan). Phonons 95: Proceedings of the combined conference of the 4thInternational Conference on Phonon Physics and the 8th International Conference on Phonon Scattering in Condensed Matter held in Sapporo, Japan, 23-28 July 1995. Edited by Nakayama Tsuneyoshi, Tamura Shin-ichiro, Yagi Toshirou, and International Conference on Phonon Scattering in Condensed Matter, (8th : 1995 : Sapporo, Japan). Amsterdam: North Holland, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kasii͡an, A. I. Kineticheskie ėffekty v poluprovodnikakh razlichnoĭ razmernosti. Kishinev: "Shtiint͡sa", 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

O, Silʹd, and Khaller K. Ė, eds. Zero-phonon lines and spectral hole burning in spectroscopy and photochemistry. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

I͡Anson, I. K. Atlas mikrokontaknykh spektrov ėlektron-fononnogo vzaimodeĭstvii͡a v metallakh: Spravochnik. Kiev: Nauk. dumka, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Khotkevich, A. V., and I. K. Yanson. Atlas of Point Contact Spectra of Electron-Phonon Interactions in Metals. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2265-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sild, Olev. Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Suwa, Hidemaro. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54517-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bron, Walter E. Nonequilibrium Phonon Dynamics. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bron, Walter. Nonequilibrium Phonon Dynamics. Springer, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nonequilibrium Phonon Dynamics. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Haller, Kristjan. Zero-Phonon Lines. Island Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev, and Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev, and Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kuleyev, Igor Gaynitdinovich, Ivan Igorevich Kuleyev, Sergey Mikhailovich Bakharev, and Vladimir Vasilyevich Ustinov. Phonon Focusing and Phonon Transport: In Single-Crytal Nanostructures. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Challis, L. Phonon Scattering in Solids. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sun, Chang Q. Electron and Phonon Spectrometrics. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sun, Chang Q. Electron and Phonon Spectrometrics. Springer Singapore Pte. Limited, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Transport in phonon systems. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Phonon Scattering in Solids. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shindé, Subhash L., and G. P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer New York, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shindé, Subhash L., and Gyaneshwar P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shindé, Subhash L., and Gyaneshwar P. Srivastava. Length-Scale Dependent Phonon Interactions. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Claus, R., L. Merten, and J. Brandmüller. Light Scattering by Phonon-Polaritons. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Horing, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.

Full text
Abstract:
Chapter 11 employs variational differential techniques and the Schwinger Action Principle to derive coupled-field Green’s function equations for a multi-component system, modeled as an interacting electron-hole-phonon system. The coupled Fermion Green’s function equations involve five interactions (electron-electron, hole-hole, electron-hole, electron-phonon, and hole-phonon). Starting with quantum Hamilton equations of motion for the various electron/hole creation/annihilation operators and their nonequilibrium average/expectation values, variational differentiation with respect to particle sources leads to a chain of coupled Green’s function equations involving differing species of Green’s functions. For example, the 1-electron Green’s function equation is coupled to the 2-electron Green’s function (as earlier), also to the 1-electron/1-hole Green’s function, and to the Green’s function for 1-electron propagation influenced by a nontrivial phonon field. Similar remarks apply to the 1-hole Green’s function equation, and all others. Higher order Green’s function equations are derived by further variational differentiation with respect to sources, yielding additional couplings. Chapter 11 also introduces the 1-phonon Green’s function, emphasizing the role of electron coupling in phonon propagation, leading to dynamic, nonlocal electron screening of the phonon spectrum and hybridization of the ion and electron plasmons, a Bohm-Staver phonon mode, and the Kohn anomaly. Furthermore, the single-electron Green’s function with only phonon coupling can be rewritten, as usual, coupled to the 2-electron Green’s function with an effective time-dependent electron-electron interaction potential mediated by the 1-phonon Green’s function, leading to the polaron as an electron propagating jointly with its induced lattice polarization. An alternative formulation of the coupled Green’s function equations for the electron-hole-phonon model is applied in the development of a generalized shielded potential approximation, analysing its inverse dielectric screening response function and associated hybridized collective modes. A brief discussion of the (theoretical) origin of the exciton-plasmon interaction follows.
APA, Harvard, Vancouver, ISO, and other styles
47

Phonon Physics The Cutting Edge. Elsevier, 1995. http://dx.doi.org/10.1016/s1874-5628(06)x8011-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Horton, G. K., and Alexei A. Maradudin. Phonon Physics the Cutting Edge. Elsevier Science & Technology Books, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Claus, R., L. Merten, and J. Brandmüller. Light Scattering by Phonon-Polaritons. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yamamoto, Takahiro, Kazuyuki Watanabe, and Satoshi Watanabe. Thermal transport of small systems. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.6.

Full text
Abstract:
This article focuses on the phonon transport or thermal transport of small systems, including quasi-one-dimensional systems such as carbon nanotubes. The Fourier law well describes the thermal transport phenomena in normal bulk materials. However, it is no longer valid when the sample dimension reduces down to below the mean-free path of phonons. In such a small system, the phonons propagate coherently without interference with other phonons. The article first considers the Boltzmann–Peierls formula of diffusive phonon transport before discussing coherent phonon transport, with emphasis on the Landauer formulation of phonon transport, ballistic phonon transport and quantized thermal conductance, numerical calculation of the phonon-transmission function, and length dependence of the thermal conductance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography