Journal articles on the topic 'Phonon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phonon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Xufeng, Chang-Ling Zou, Liang Jiang, and Hong X. Tang. "Cavity magnomechanics." Science Advances 2, no. 3 (March 2016): e1501286. http://dx.doi.org/10.1126/sciadv.1501286.
Full textDovlatova, Alla, and Dmitri Yerchuck. "Quantum Field Theory of Dynamics of Spectroscopic Transitions by Strong Dipole-Photon and Dipole-Phonon Coupling." ISRN Optics 2012 (December 12, 2012): 1–10. http://dx.doi.org/10.5402/2012/390749.
Full textP, Munkhbaatar. "Generation and Detection of Squeezed Phonon." Физик сэтгүүл 22, no. 449 (March 13, 2022): 7–10. http://dx.doi.org/10.22353/physics.v22i449.595.
Full textPrasher, Ravi S. "Mie Scattering Theory for Phonon Transport in Particulate Media." Journal of Heat Transfer 126, no. 5 (October 1, 2004): 793–804. http://dx.doi.org/10.1115/1.1795243.
Full textLe Dé, Brieuc, Christian J. Eckhardt, Dante M. Kennes, and Michael A. Sentef. "Cavity engineering of Hubbard U via phonon polaritons." Journal of Physics: Materials 5, no. 2 (April 1, 2022): 024006. http://dx.doi.org/10.1088/2515-7639/ac618e.
Full textCarmele, Alexander, and Stephan Reitzenstein. "Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory." Nanophotonics 8, no. 5 (April 23, 2019): 655–83. http://dx.doi.org/10.1515/nanoph-2018-0222.
Full textKuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto, and Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders." Advanced Materials Research 11-12 (February 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.
Full textRivera, Nicholas, Gilles Rosolen, John D. Joannopoulos, Ido Kaminer, and Marin Soljačić. "Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons." Proceedings of the National Academy of Sciences 114, no. 52 (December 12, 2017): 13607–12. http://dx.doi.org/10.1073/pnas.1713538114.
Full textHasegawa, Takayuki. "Characteristics of Coherent Optical Phonons in a Hexagonal YMnO3 Thin Film." Applied Sciences 9, no. 4 (February 18, 2019): 704. http://dx.doi.org/10.3390/app9040704.
Full textMurphy-Armando, F., É. D. Murray, I. Savić, M. Trigo, D. A. Reis, and S. Fahy. "Electronic heat generation in semiconductors: Non-equilibrium excitation and evolution of zone-edge phonons via electron–phonon scattering in photo-excited germanium." Applied Physics Letters 122, no. 1 (January 2, 2023): 012202. http://dx.doi.org/10.1063/5.0131157.
Full textMassoni, Eduardo, and Miguel Orszag. "Phonon–photon translator." Optics Communications 179, no. 1-6 (May 2000): 315–21. http://dx.doi.org/10.1016/s0030-4018(99)00673-2.
Full textDOLOCAN, ANDREI, VOICU OCTAVIAN DOLOCAN, and VOICU DOLOCAN. "SOME ASPECTS OF THE ELECTRON-BOSON INTERACTION AND OF THE ELECTRON-ELECTRON INTERACTION VIA BOSONS." Modern Physics Letters B 21, no. 01 (January 10, 2007): 25–36. http://dx.doi.org/10.1142/s0217984907012335.
Full textLoktev, V. M., and M. D. Tomchenko. "On the Nature of a Narrow Roton Absorption Line in the Spectrum of a Disk-shaped SHF Resonator." Ukrainian Journal of Physics 56, no. 1 (February 17, 2022): 49. http://dx.doi.org/10.15407/ujpe56.1.49.
Full textDUTTA, M., and M. A. STROSCIO. "ADVANCED SEMICONDUCTOR LASERS: PHONON ENGINEERING AND PHONON INTERACTIONS." International Journal of High Speed Electronics and Systems 09, no. 04 (December 1998): 1265–77. http://dx.doi.org/10.1142/s012915649800049x.
Full textKang, Nam Lyong, and Sang Don Choi. "Projection-Reduction Approach to Optical Conductivities for an Electron-Phonon System and Their Diagram Representation." ISRN Condensed Matter Physics 2014 (April 7, 2014): 1–23. http://dx.doi.org/10.1155/2014/719120.
Full textZhang, Li, Hong-Jing Xie, and Chuan-Yu Chen. "Electron-Phonon Interaction in a Multi-Shell Spherical Nanoheterosystem." Modern Physics Letters B 17, no. 20n21 (September 10, 2003): 1081–94. http://dx.doi.org/10.1142/s0217984903006165.
Full textZOU, JIAN, and BIN SHAO. "NONCLASSICAL STATES EVOLVING FROM CLASSICAL STATES IN A POLARITON SYSTEM AT LOW TEMPERATURE." International Journal of Modern Physics B 13, no. 18 (July 20, 1999): 2371–85. http://dx.doi.org/10.1142/s0217979299002460.
Full textSun, J. P., H. B. Teng, G. I. Haddad, M. A. Stroscio, and G. J. Iafrate. "lntersubband Relaxation in Step Quantum Well Structures." VLSI Design 8, no. 1-4 (January 1, 1998): 289–93. http://dx.doi.org/10.1155/1998/17823.
Full textMatveenko, S. I., and S. Brazovskii. "Theory of pseudogaps in charge density waves in application to photo electron spectroscopy." Journal de Physique IV 12, no. 9 (November 2002): 73. http://dx.doi.org/10.1051/jp4:20020358.
Full textKiselev A I, Shevchenko V G., and Konyukova A.V. "Influence of photon-phonon interaction on the optical properties of aluminum powder." Optics and Spectroscopy 130, no. 10 (2022): 1223. http://dx.doi.org/10.21883/eos.2022.10.54857.3324-22.
Full textZhao, Feng Qi, and Xiao Mei Dai. "Influence of Pressure on Polaron Energy in a Wurtzite GaN/AlxGa1-xN Quantum Well." Solid State Phenomena 288 (March 2019): 17–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.288.17.
Full textFan, Huanrong, Faizan Raza, Irfan Ahmed, Muhammad Imran, Faisal Nadeem, Changbiao Li, Peng Li, and Yanpeng Zhang. "Photon–Phonon Atomic Coherence Interaction of Nonlinear Signals in Various Phase Transitions Eu3+: BiPO4." Nanomaterials 12, no. 23 (December 4, 2022): 4304. http://dx.doi.org/10.3390/nano12234304.
Full textIbragimov, Guseyn B., and Raida Z. Ibayeva. "Intraband Absorption of Electromagnetic Radiation by Electrons with Optical Phonon Participation in Quantum Dot Superlattices." Radioelectronics. Nanosystems. Information Technologies. 16, no. 2 (April 25, 2024): 249–54. http://dx.doi.org/10.17725/j.rensit.2024.16.249.
Full textSingh, Anu, Hempal Singh, Vinod Ashokan, and B. D. Indu. "Electrons and Phonons in High Temperature Superconductors." Journal of Materials 2013 (February 14, 2013): 1–4. http://dx.doi.org/10.1155/2013/605929.
Full textShi, Jun-jie, B. C. Sanders, and Shao-hua Pan. "Coherent and Phonon-assisted Tunnelling in Asymmetric Double Barrier Resonant Tunnelling Structures." Australian Journal of Physics 53, no. 1 (2000): 35. http://dx.doi.org/10.1071/ph99037.
Full textKuleyev I. G. and Kuleyev I. I. "The Effect of phonon focusing on the mutual drag of electrons and phonons and the electrical resistance of potassium." Physics of the Solid State 64, no. 8 (2022): 901. http://dx.doi.org/10.21883/pss.2022.08.54601.324.
Full textКулеев, И. Г., and И. И. Кулеев. "Влияние фокусировки на взаимное увлечение электронов и фононов и электросопротивление кристаллов калия." Физика твердого тела 64, no. 8 (2022): 899. http://dx.doi.org/10.21883/ftt.2022.08.52680.324.
Full textBannov, N. A., V. V. Mitin, and F. T. Vasko. "Modelling of Hot Acoustic Phonon Propagation in Two Dimensional Layers." VLSI Design 6, no. 1-4 (January 1, 1998): 197–200. http://dx.doi.org/10.1155/1998/79658.
Full textManley, M. E., K. Hong, P. Yin, S. Chi, Y. Cai, C. Hua, L. L. Daemen, et al. "Giant isotope effect on phonon dispersion and thermal conductivity in methylammonium lead iodide." Science Advances 6, no. 31 (July 2020): eaaz1842. http://dx.doi.org/10.1126/sciadv.aaz1842.
Full textPHUONG, LE THI THU, and TRAN CONG PHONG. "RATE OF CONFINED PHONON EXCITATION IN RECTANGULAR QUANTUM WIRES." International Journal of Computational Materials Science and Engineering 01, no. 01 (March 2012): 1250002. http://dx.doi.org/10.1142/s2047684112500029.
Full textDekorsy, Thomas, Gyu Cheon Cho, and Heinrich Kurz. "Coherent Phonons in Semiconductors and Semiconductor Heterostructures." Journal of Nonlinear Optical Physics & Materials 07, no. 02 (June 1998): 201–13. http://dx.doi.org/10.1142/s021886359800017x.
Full textTAKESHIMA, MASUMI, K. MIZUNO, and ATSUO H. MATSUI. "PHONON SCATTERING OF FRENKEL EXCITONS IN MOLECULAR MICROCRYSTALLITES EMBEDDED IN A MATRIX." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3973–76. http://dx.doi.org/10.1142/s021797920100913x.
Full textThu Huong, Nguyen, Tang Thi Dien, Nguyen Quang Bau, Tran Khuong Duy, Nguyen Dinh Nam, and Dao Thanh Hue. "Photostimulated Nernst effect in two-dimensional compositional semiconductor superlattices under the influence of confined phonons." Journal of Physics: Conference Series 2744, no. 1 (April 1, 2024): 012004. http://dx.doi.org/10.1088/1742-6596/2744/1/012004.
Full textChen, J., and Y. Liu. "Effect of out-of-plane acoustic phonons on the thermal transport properties of graphene." Condensed Matter Physics 26, no. 4 (2023): 43603. http://dx.doi.org/10.5488/cmp.26.43603.
Full textRen, Weijun, Jie Chen, and Gang Zhang. "Phonon physics in twisted two-dimensional materials." Applied Physics Letters 121, no. 14 (October 3, 2022): 140501. http://dx.doi.org/10.1063/5.0106676.
Full textLiu, Xinyu, Quanjie Wang, Renzong Wang, Sheng Wang, and Xiangjun Liu. "Impact of interfacial compositional diffusion on interfacial phonon scattering and transmission in GaN/AlN heterostructure." Journal of Applied Physics 133, no. 9 (March 7, 2023): 095101. http://dx.doi.org/10.1063/5.0134903.
Full textYin, Tai-Shuang, Guang-Ri Jin, and Aixi Chen. "Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators." Micromachines 13, no. 4 (April 9, 2022): 591. http://dx.doi.org/10.3390/mi13040591.
Full textLuckyanova, M. N., J. Mendoza, H. Lu, B. Song, S. Huang, J. Zhou, M. Li, et al. "Phonon localization in heat conduction." Science Advances 4, no. 12 (December 2018): eaat9460. http://dx.doi.org/10.1126/sciadv.aat9460.
Full textJin, Jae Sik, and Joon Sik Lee. "Electron–Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 4094–100. http://dx.doi.org/10.1166/jnn.2007.010.
Full textJin, Jae Sik, and Joon Sik Lee. "Electron–Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 4094–100. http://dx.doi.org/10.1166/jnn.2007.18084.
Full textTimsina, Sanker, Taha Hammadia, Sahar Gholami Milani, Filomeno S. de Aguiar Júnior, Alexandre Brolo, and Rogério de Sousa. "Resonant squeezed light from photonic Cooper pairs." Physical Review Research 6, no. 3 (July 15, 2024). http://dx.doi.org/10.1103/physrevresearch.6.033067.
Full textAbo, Shilan, Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk, Jan Peřina, Ravindra Chhajlany, and Adam Miranowicz. "Hybrid photon–phonon blockade." Scientific Reports 12, no. 1 (October 21, 2022). http://dx.doi.org/10.1038/s41598-022-21267-4.
Full textFu, Yu, Fei Liang, Cheng He, Haohai Yu, Huaijin Zhang, and Yan-Feng Chen. "Photon-phonon collaboratively pumped laser." Nature Communications 14, no. 1 (December 7, 2023). http://dx.doi.org/10.1038/s41467-023-43959-9.
Full textKuznetsov, Alexander Sergeevich, Klaus Biermann, Andres Alejandro Reynoso, Alejandro Fainstein, and Paulo Ventura Santos. "Microcavity phonoritons – a coherent optical-to-microwave interface." Nature Communications 14, no. 1 (September 18, 2023). http://dx.doi.org/10.1038/s41467-023-40894-7.
Full textWang, Tie, Wei Zhang, Ji Cao, and Hong-Fu Wang. "Exceptional-point-engineered phonon laser in a cavity magnomechanical system." New Journal of Physics, August 15, 2023. http://dx.doi.org/10.1088/1367-2630/acf068.
Full textChafatinos, D. L., A. S. Kuznetsov, S. Anguiano, A. E. Bruchhausen, A. A. Reynoso, K. Biermann, P. V. Santos, and A. Fainstein. "Polariton-driven phonon laser." Nature Communications 11, no. 1 (September 11, 2020). http://dx.doi.org/10.1038/s41467-020-18358-z.
Full textMelvin, Daniel, Fulu Zheng, Kewei Sun, Zhengjie Tan, and Yang Zhao. "Photon‐Assisted Landau Zener Transitions in a Tunable Driven Rabi Dimer Coupled to a Micromechanical Resonator." Advanced Quantum Technologies, September 27, 2023. http://dx.doi.org/10.1002/qute.202300232.
Full textYazdani, Nuri, Maximilian Jansen, Deniz Bozyigit, Weyde M. M. Lin, Sebastian Volk, Olesya Yarema, Maksym Yarema, Fanni Juranyi, Sebastian D. Huber, and Vanessa Wood. "Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials." Nature Communications 10, no. 1 (September 17, 2019). http://dx.doi.org/10.1038/s41467-019-12305-3.
Full textBarra-Burillo, María, Unai Muniain, Sara Catalano, Marta Autore, Fèlix Casanova, Luis E. Hueso, Javier Aizpurua, Ruben Esteban, and Rainer Hillenbrand. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime." Nature Communications 12, no. 1 (October 27, 2021). http://dx.doi.org/10.1038/s41467-021-26060-x.
Full textDing, Ming-Song, Li Zheng, and Chong Li. "Phonon laser in a cavity magnomechanical system." Scientific Reports 9, no. 1 (October 31, 2019). http://dx.doi.org/10.1038/s41598-019-52050-7.
Full text