Academic literature on the topic 'Phosphate ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phosphate ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phosphate ceramics"
Kazakova, G. K., T. V. Safronova, and T. B. Shatalova. "Ceramics based on powders synthesized from ammonium hydrophosphate and acetates of calcium and magnesium." Materials Science, no. 4 (April 20, 2021): 33–40. http://dx.doi.org/10.31044/1684-579x-2021-0-04-33-40.
Full textSogo, Yu, Atsuo Ito, Koshiro Fukasawa, Tokoha Sakurai, Noboru Ichinose, and Racquel Z. LeGeros. "Zinc-Containing Calcium Phosphate Ceramics with a (Ca+Zn)/P Molar Ratio of 1.67." Key Engineering Materials 284-286 (April 2005): 31–34. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.31.
Full textTamai, Masato, Ryusuke Nakaoka, and Toshie Tsuchiya. "Cytotoxicity of Various Calcium Phosphate Ceramics." Key Engineering Materials 309-311 (May 2006): 263–66. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.263.
Full textTanaka, R., A. Fujishima, Y. Shibata, A. Manabe, and T. Miyazaki. "Cooperation of Phosphate Monomer and Silica Modification on Zirconia." Journal of Dental Research 87, no. 7 (July 2008): 666–70. http://dx.doi.org/10.1177/154405910808700705.
Full textMardziah, C. M., Mohamad Firdaus Abdul Wahid, Koay Mei Hyie, Nik Rozlin Nik Masdek, and Z. Salleh. "Effect of Sintering Temperature on Zinc Substituted Calcium Phosphate Ceramics." Materials Science Forum 890 (March 2017): 209–12. http://dx.doi.org/10.4028/www.scientific.net/msf.890.209.
Full textMayr, Helmar, Susanne Schlüfter, Rainer Detsch, and Günter Ziegler. "Influence of Phase Composition on Degradation and Resorption of Biphasic Calcium Phosphate Ceramics." Key Engineering Materials 361-363 (November 2007): 1043–46. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.1043.
Full textOta, Toshitaka, Takahiro Eitsuka, Haruki Yoshida, and Nobuyasu Adachi. "Porous Apatite Ceramics Derived from Woods." Advanced Materials Research 11-12 (February 2006): 247–50. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.247.
Full textLazar, Dolores Ribeiro Ricci, Sandra Maria Cunha, Valter Ussui, E. Fancio, Nelson Batista de Lima, and Ana Helena A. Bressiani. "Effect of Calcination Conditions on Phase Formation of Calcium Phosphates Ceramics Synthesized by Homogeneous Precipitation." Materials Science Forum 530-531 (November 2006): 612–17. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.612.
Full textMoguš-Milanković, Andrea, Ana Šantić, Luka Pavić, and Kristina Sklepić. "Iron Phosphate Glass-ceramics." Croatica Chemica Acta 88, no. 4 (2015): 553–60. http://dx.doi.org/10.5562/cca2759.
Full textKASUGA, TOSHIHIRO, and MASAYUKI NOGAMI. "MACHINABLE CALCIUM PHOSPHATE CERAMICS." Phosphorus Research Bulletin 13 (2002): 153–58. http://dx.doi.org/10.3363/prb1992.13.0_153.
Full textDissertations / Theses on the topic "Phosphate ceramics"
Sreeram, Attiganal Narayanaswamy. "Topological disorder in phosphate and other ceramics." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32679.
Full textIncludes bibliographical references (leaves 146-157).
by Attiganal Narayanaswamy Sreeram.
Sc.D.
Jensen, Amy S. "Phosphate bonding of ceramic hollow sphere foams." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/19444.
Full textLangstaff, Sarah Dorthea. "Calcium phosphate ceramics capable of supporting osteoclastic resorption." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0005/NQ42953.pdf.
Full textWalsh, Pamela Judith. "Natural calcium phosphate ceramics for tissue engineering application." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486236.
Full textDe, Mestral François. "Calcium phosphate glasses and glass-ceramics for medical applications." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65405.
Full textQadri, Syed Jalaluddin. "Phosphate and vanadate ceramics with xenotime and monazite structures." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406808.
Full textLloyd, Michael Charles. "The dissolution of soluble phosphate glasses." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293799.
Full textShaw, Lindsey Ann. "The development of chemical bonding systems for refractories/ceramics." Thesis, Keele University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341290.
Full textBerg, Camilla. "Influence of Magnesium in theFormation of Phosphate Spheres : A simple method for the fabrication of sphericalparticles of calcium and magnesium phosphate." Thesis, Uppsala universitet, Oorganisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326255.
Full textGallinetti, Sara. "New approaches in calcium phosphate cements and ceramics for bone regeneration." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279558.
Full textEl hueso es uno de los tejidos más trasplantados del cuerpo. Sólo en Europa, se cuentan alrededor de un millón de cirugías de reconstrucción ósea anualmente. La estimación del mercado global de los sustitutos óseos es aproximadamente de cinco billones de Euros por año, con un 10% de crecimiento anual debido al envejecimiento de la población. Debido a los problemas asociados a los injertos biológicos, la investigación y el desarrollo de materiales sintéticos y biocompatibles (Biomateriales) ha experimentado un gran auge. Aunque la mayoría de sustitutos sintéticos disponibles poseen algunas de las características de los autoinjertos, hasta el momento ninguno reúne todos los beneficios del hueso del propio individuo. Dentro de los biomateriales para regeneración ósea, los fosfatos de calcio han sido de gran interés debido a su composición química similar a la del hueso. Sin embargo, aún se requieren mejoras en distintos aspectos de estos materiales. El objetivo principal de esta Tesis Doctoral es contribuir a la mejora de las propiedades de los fosfatos de calcio para la regeneración ósea, con un interés especial en los cementos de fosfato de calcio. La Tesis investiga diferentes estrategias para el desarrollo de materiales para la sustitución ósea, novedosos y con propiedades mejoradas respecto a los actuales. La Tesis comprende tres partes principales: i) Cementos bifásicos de fosfato de calcio (BCPCs), constituidos por materiales con diferente solubilidad; ii) Fosfatos de calcio reforzados con fibras (FRCPCs), para la mejora de las propiedades mecánicas; iii) Andamios macroporosos para la liberación de una sal de simvastatina. En la primera parte de la Tesis, se describe el desarrollo de BCPCs compuestos por hidroxiapatita deficiente en calcio (CDHA) y fosfato tricálcico ß (ß-TCP). Estos materiales derivan de la reacción de las mezclas de dos polimorfos de fosfato tricalcico (TCP) con diferente solubilidad (a-TCP y ß-TCP) y, en esta tesis, se caracterizan su fraguado, sus propiedades mecánicas y degradación. En la segunda parte, se han desarrollado nuevos FRCPCs con especial atención hacia la mejora de la adhesión entre fibras y matriz, con el objetivo de mejorar la transferencia de carga entre ellos y por tanto, las propiedades mecánicas del compuesto. Se han investigado distintas estrategias. La primera de ellas basada en la investigación de materiales con una fase común (o con alta afinidad química) entre las fibras y la fase liquida del cemento; de esta manera se pretende crear un enlace más fuerte entre las fibras y la matriz. En un primer material se incorporó un 1 w/v% de Trimetilo de quitosán (TMC) en la fase líquida del cemento que a su vez se reforzó con fibras de quitosán. En un segundo grupo de materiales, se añadió un 10 v/v% de ácido láctico (LA) a la matriz del cemento junto con hilos discontinuos de ácido poliláctico (PLLA). Estos cementos también se caracterizaron biológicamente por medio de células osteoblásticas MG63. La segunda estrategia investigada en los FRCPCs se basa en la modificación superficial de las fibras de PLLA con plasma de baja temperatura con el fin de mejorar sus propiedades de mojado. Las fibras se trataron con plasma de oxigeno de baja presión a distintos tiempos y se incorporaron a la matriz de cemento, y se caracterizaron tanto las modificaciones superficiales de las fibras como las propiedades del cemento. La tercera parte ha consistido en el desarrollo de andamios macroporosos obtenidos a baja (CDHA) o alta (ß-TCP) temperatura para ser utilizados como formas de liberación de una sal de simvastatina (SVA), con propiedades osteogénicas y angiogénicas. Para conseguir modular la liberación del fármaco se recubrieron los andamios cargados con SVA con un copolímero de PCL:PEG mediante polimerización por plasma. Se caracterizaron las propiedades tanto del material como del recubrimiento y se evaluó la liberación del fármaco.
Books on the topic "Phosphate ceramics"
Komlev, V. S. (Vladimir Sergeevich), ed. Biokeramika na osnove fosfatov kalʹt︠s︡ii︠a︡: Calcium phosphate based bioceramics. Moskva: Nauka, 2005.
Find full textS, Komlev V., ed. Calcium phosphate based bioceramics for bone tissue engineering. Stafa-Zuerich, Switzerland: Trans Tech Publications, 2008.
Find full textSharpe, Justin Robert. The effect of phase variation on the biological response to calcium phosphate ceramics. Birmingham: University of Birmingham, 1998.
Find full textDeckman, Douglas E. Vaporphase deposition studies of phosphate esters on metal and ceramic surfaces. Washington, D.C: National Institute of Standards and Technology, 1988.
Find full textDeckman, Douglas E. Vapor phase deposition studies of phosphate esters on metal and ceramic surfaces. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1988.
Find full textChapman, Chris. Development of process to manufacture glass/glass-ceramic products from phosphogypsum: Final report. Bartow, Fla: The Institute, 2006.
Find full textChemically Bonded Phosphate Ceramics. Elsevier, 2016. http://dx.doi.org/10.1016/c2014-0-02562-2.
Full textChemically Bonded Phosphate Ceramics. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-08-044505-2.x5000-5.
Full textWagh, Arun S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications. Elsevier, 2016.
Find full textWagh, Arun S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications. Elsevier Science & Technology Books, 2016.
Find full textBook chapters on the topic "Phosphate ceramics"
Arcos, Daniel. "Calcium Phosphate Bioceramics." In Bio-Ceramics with Clinical Applications, 23–71. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118406748.ch3.
Full textSingh, Dileep, Roopa Ganga, Jose Gaviria, and Yusuf Yusufoglu. "Chemically Bonded Phosphate Ceramics: Stabilization of Secondary Wastes Streams." In Engineered Ceramics, 445–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119100430.ch22.
Full textLi, Yan Bao, Dong Xu Li, and Wen Jian Weng. "In Vitro Dissolution Behavior of Biphasic Tricalcium Phosphate Composite Powders Composed of α-Tricalcium Phosphate and β-Tricalcium Phosphate." In High-Performance Ceramics V, 1206–8. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1206.
Full textTamai, Masato, Ryusuke Nakaoka, and Toshie Tsuchiya. "Cytotoxicity of Various Calcium Phosphate Ceramics." In Bioceramics 18, 263–66. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-992-x.263.
Full textLi, Tong Wei, Zheng Xin Tang, Wei Wei Ju, and Xiao Yang Gong. "Electrical Conductivity in Alkali Iron Phosphate Glasses." In High-Performance Ceramics V, 1446–48. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1446.
Full textYang, De An, Zi Yang, Weijie Hu, Yuan Yuan Li, and Huan Wang. "Synthesis of Calcium Phosphate/Gypsum Composite Powders." In High-Performance Ceramics III, 1559–62. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.1559.
Full textBaccour, Hajer, Hela Koubaa, and Samir Baklouti. "Phosphate Sludge from Tunisian Phosphate Mines: Valorisation as Ceramics Products." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1479–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_431.
Full textJi, Jin Gou, Yi Xu, Song Chen, Wei Qi Liu, and Jun Guo Ran. "Dense Calcium Phosphate Bioceramics Sintered by Microwave Plasma." In High-Performance Ceramics V, 1181–83. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1181.
Full textSanSoucie, Michael, and Robert W. Hyers. "Calcium Phosphate Based Ceramics Via Spinodal Decmoposition." In Ceramic Transactions Series, 111–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408414.ch13.
Full textLv, Qing, Kevin W. H. Lo, Lakshmi S. Nair, and Cato T. Laurencin. "Calcium-Phosphate-Based Ceramics for Biomedical Applications." In Biodegradable Polymers in Clinical Use and Clinical Development, 495–517. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015810.ch14.
Full textConference papers on the topic "Phosphate ceramics"
Sakamoto, K., Y. Tsunawaki, J. Takahashi, T. Matsumoto, A. Nakahira, S. Yamaguchi, M. Inoue, and M. Okazaki. "BIOACTIVE BONE CEMENTS OF CALCIUM PHOSPHATE - MONO(METHACRYLOYLOXYETHYL) ACID PHOSPHATE COMPOSITE." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0130.
Full textIto, A., K. Ojima, K. Kawamura, N. Ichinose, P. Layrolle, K. Hayashi, and T. Tateishi. "ZINC-RELEASING CALCIUM PHOSPHATE CERAMICS STIMULATING BONE FORMATION." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0136.
Full textTerebilenko, Kateryna, Oleksandr Alekseev, Maksym Lazarenko, Sergii G. Nedilko, Mykola Slobodyanik, Volodymyr Boyko, and Vitalii Chornii. "Luminescent Bi-containing Phosphate-Molybdate Glass-Ceramics." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309625.
Full textGross, U., C. Voigt, A. Hering, R. Rahmanzadeh, and C. Müller-Mai. "RESORPTION OF CALCIUM PHOSPHATE CERAMICS OF DIFFERENT CRYSTAL SIZE." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0067.
Full textPetit, L., H. Nguyen, M. Hongisto, T. Salminen, T. Hakkarainen, P. Lopez-Iscoa, D. Pugliese, N. G. Boetti, and D. Milanese. "Novel Er3+ doped phosphate glass-ceramics for photonics." In 2017 19th International Conference on Transparent Optical Networks (ICTON). IEEE, 2017. http://dx.doi.org/10.1109/icton.2017.8024877.
Full textKikuchi, Masanori, Yasushi Suetsugu, Yoshihisa Koyama, Shinichi Sotome, Soichiro Itoh, Kazuo Takakuda, Kenichi Shinomiya, Kazuya Edamura, Katsuyoshi Nagaoka, and Shigeo Tanaka. "Bone Regeneration Materials Based on Calcium Phosphate Ceramics." In In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0021.
Full textYokogawa, Y., K. Nishizawa, F. Nagata, and T. Kameyama. "FORMATION OF CALCIUM PHOSPHATE OVER POROUS PHOSPHORYLATED CHITOSAN SPONGES." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0031.
Full textSuzuki, Katsuji, Mitsuko Yamada, and Tsuneyo Matsubayashi. "HYDROXYAPATITE TRICALCIUM PHOSPHATE AS A FILLER FOR INFECTED BONE DEFECTS." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0002.
Full textYou, Changkook, Kyoungmin Kim, Joon Hee Lee, and Sukyoung Kim. "BIODEGRADABLE CALCIUM PHOSPHATE COATING ON Ti6A14V BY SOL-GEL PROCESS." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0121.
Full textAsaoka, Nobuyuki, Motohiko Misago, Masahiro Hirano, and Hiroyasu Takeuchi. "MECHANICAL AND CHEMICAL PROPERTIES OF THE INJECTABLE CALCIUM PHOSPHATE CEMENT." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0126.
Full textReports on the topic "Phosphate ceramics"
Singh, D., R. Ganga, J. Gaviria, and Y. Yusufoglu. Secondary waste form testing : ceramicrete phosphate bonded ceramics. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1020703.
Full textSingh, D., A. S. Wagh, J. C. Cunnane, and J. L. Mayberry. Chemically bonded phosphate ceramics for low-level mixed waste stabilization. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10114142.
Full textAuthor, Not Given. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/1248378.
Full textAnderson, M. A., W. A. Zeltner, and C. G. Jr Hill. Development of phosphate-based ceramic membranes. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/7164518.
Full textAnderson, M. A., W. A. Zeltner, and C. G. Jr Hill. Development of phosphate-based ceramic membranes. Final report. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10186324.
Full textShirish Patil, Godwin A. Chukwu, Gang Chen, and Santanu Khataniar. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/963362.
Full textDeckman, Douglas E., Douglas E. Deckman, Stephen M. Hsu, and E. Erwin Klaus. Vapor phase deposition studies of phosphate esters on metal and ceramic surfaces. Gaithersburg, MD: National Institute of Standards and Technology, 1988. http://dx.doi.org/10.6028/nist.sp.754.
Full textWagh, A. S., D. Singh, and S. Y. Jeong. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/510298.
Full textSugama, T., and N. R. Carciello. Advanced zinc phosphate conversion and pre-ceramic polymetallosiloxane coatings for corrosion protection of steel and aluminum, and characteristics of polyphenyletheretherketone-based materials. Final report. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10135338.
Full text