To see the other types of publications on this topic, follow the link: Phosphatic fertilisers.

Dissertations / Theses on the topic 'Phosphatic fertilisers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Phosphatic fertilisers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lewis, D. James. "Foliar-applied phosphate on potatoes (Solanum tuberosum L.) : factors affecting uptake by the leaves and the effects on growth and yield." Thesis, Open University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Norrish, Shane A., University of Western Sydney, of Science Technology and Environment College, and School of Environment and Agriculture. "Soil and water interactions controlling wheat crop response to phosphorus fertiliser in north-western New South Wales." THESIS_CSTE_EAG_Norrish_S.xml, 2003. http://handle.uws.edu.au:8081/1959.7/613.

Full text
Abstract:
This thesis examines the response to P fertiliser by wheat crops growing in the vertosol soils of the low rainfall areas of the northern grain zone of eastern Australia. Farmers in this region depend on water accumulated from rainfall over a fallow period and stored in the subsoil to increase wheat grain yield beyond that normally achievable from in-crop rainfall and to decrease the production risks due to rainfall variability. The large variability in stored water, seasonal rainfall and subsoil properties result in extremely varied yield and yield responses to P fertiliser between seasons and between sites. Finally, as a practical guide to predicting wheat response to P fertilizer: 1/. current sampling strategies of determining P only in the surface 10 cm appear to be adequate for soils with bicarbonate P concentrations greater than 15 mg/kg. 2/. For soils with lower concentrations in the surface, sampling of 80 cm is recommended. Crops with a mean concentration of bicarbonate P greater than 7 mg/kg between 10 - 80 cm are unlikely to respond to P fertiliser. 3/. No increase in profitable grain yield response was found for fertiliser applications greater than 10 kg P/ha.
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
3

Javid, Shahid. "Residual effect of phosphate fertiliser measured using the Olsen method in Pakistani soils." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Norrish, Shane. "Soil and water interactions controlling wheat crop response to phosphorus fertiliser in north-western New South Wales." View thesis, 2003. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20051013.115006/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sattouf, Mamdoh [Verfasser]. "Identifying the origin of rock phosphates and phosphorus fertilisers using isotope ratio techniques and heavy metal patterns / Mamdoh Sattouf." Braunschweig : Bundesforschungsanst. für Landwirtschaft, 2007. http://d-nb.info/996740074/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Di, Hong J. "Application of isotopic dilution methods to the study of the dissolution of phosphate fertilisers of differing solubility in the soil." Lincoln University, 1991. http://hdl.handle.net/10182/1792.

Full text
Abstract:
An injection technique, in which undisturbed soil cores are labelled with ³²P to study dissolution of phosphate fertilisers in the soil, was evaluated in field and glasshouse trials. When ³²P was injected between 0-150 mm depths of the undisturbed soil columns and fertilisers applied at the surface, the amounts of fertiliser P dissolved, as measured by the increases in the exchangeable P pools, were overestimated. Three possible reasons were suggested: (i) the interaction between surface-applied fertiliser, ³²P injected through the whole soil column, and the vertical decline in root density, (ii) the decline of specific activity in the exchangeable P pool due to losses of ³²P to nonexchangeable P pools and continuous addition of P from fertiliser dissolution, and (iii) non-uniform distribution of ³²P vis-a-vis ³¹P phosphate. The injection technique may be employed to assess the effectiveness of phosphate fertilisers by introducing a concept, the fertiliser equivalent (FE). The FE is a measure of the amounts of soil exchangeable P that the fertilisers are equivalent to in supplying P to plants, when applied at the specific location. Soluble single superphosphate (SSP) applied at the surface of undisturbed grassland soil cores (Tekapo fine sandy loam), was much more effective than surface-applied unground North Carolina phosphate rock (NCPR) and 30% acidulated NCPR with phosphoric acid (NCPAPR) within the 56 day period of plant growth. An isotopic dilution method, based on tracer kinetic theory, was developed to study the rates of dissolution (F in) and retention (F out) of phosphate fertilisers in the soil in growth chamber experiments. The estimation of F in and F out required labelling of the soils with carrier-free ³²P and determination of the corresponding values of the specific activities of the exchangeable P pools, SA₁ and SA₂, and the sizes of the exchangeable P pools, Q₁ and Q₂, at times t₁ and t₂. Most of the phosphate in the monocalcium phosphate (MCP) solution entered the exchangeable P pool immediately after addition to the soils (Tekapo fine sandy loam and Craigieburn silt loam), and there was little further phosphate input. With increasing periods of incubation, the phosphate was quickly transformed to less rapidly exchangeable forms. In the soils treated with ground North Carolina phosphate rock (<150 µm, NCPR) or partially acidulated (30%) NCPR with phosphoric acid (NCPAPR), the initial exchangeable P pools were not as large as those in the soils treated with MCP, but were maintained at relatively stable concentrations for extended periods, due to the continuous dissolution of PR materials and to lower rates of pretention. An increase in P-retention caused a slight rise in the rate of PR dissolution, but also a rise in the rate of P-retention by the soil. The rate of dissolution was higher at a lower application rate in relative terms, but smaller in absolute terms. The trends in the changes of plant-available P in the soils, measured by the water extractable P, Bray I P and Olsen P, correspond to those predicted by the F in and F out values. The average rates of dissolution between 1-50 and 50-111 days estimated by the F in, however, were higher than those estimated by extractions with 0.5 M NaOH followed by 1 M HCl, and with 0.5 M BaCl₂/TEA. This is partly because the Fin values reflect a plant growth effect on PR dissolution. The relative agronomic effectiveness of NCPR and NCPAPR with respect to MCP was higher after 50 and 111 days of incubation than after 1 day. The F in values were included in all the two-variable models constructed by stepwise regression to describe the relationship between plant P uptake and soil measurements. The amounts of variation in plant P uptake accounted for by the regression model was significantly improved by including F in in the model. This indicates the importance of fertiliser dissolution rates in affecting soil P supply, when phosphate fertilisers differing in solubility are applied.
APA, Harvard, Vancouver, ISO, and other styles
7

Rose, Terry. "Deep-placed phosphate fertiliser improves phosphorus uptake and seed yield of canola (Brassica napus L.) in a Mediterranean-type climate." University of Western Australia. Dept. of Soil Science and Plant Nutrition, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0237.

Full text
Abstract:
In Mediterranean-type climates, topsoil frequently dries out during spring. Problems associated with reduced nutrient (P, K) availability in dry topsoil may be overcome by placing fertilisers deeper in the soil, where the soil is more likely to remain moist for longer periods as opposed to conventional fertiliser placement. Deep-P placement has resulted in significant yield improvements for lupin crops in Mediterranean environments because lupin crops generally require soil P supply during spring (throughout the flowering stage); in contrast, wheat yields have seldom improved with deep P placement, presumably because plants have accumulated sufficient P prior to spring (grain filling stage) for maximum grain yields. The P and K accumulation patterns of canola had not been investigated, and therefore any potential yield benefits of deep placed fertilisers were unknown. This study aimed to define the P and K demands of canola throughout the growing season, and assess the viability of deep placement of fertiliser in matching soil P and K supply to crop demand. The study further investigated the impact of deep placement of P fertiliser on root growth and distribution throughout the soil profile. Initial glasshouse studies compared the P and K accumulation patterns of several canola cultivars with wheat, and found that the P and K demand of canola continued until later into the season than wheat, but there was little difference in the P and K accumulation patterns of the various canola cultivars. Further experiments in sand culture determined that regardless of the level of K supply, canola plants had accumulated sufficient K for maximum seed yields by early flowering. Under high P supply, canola plants had accumulated enough P for maximum seed yields by early flowering, but when P supply during vegetative growth was just adequate, plants required a continual P supply until mid silique-filling to attain maximum yields. Because plants had accumulated sufficient K for maximum seed yields by early flowering (therefore topsoil drying in spring was unlikely to affect yields), further field experiments examined only deep placement of P fertiliser to improve P uptake and yields.
APA, Harvard, Vancouver, ISO, and other styles
8

Heshmati-Rafsanjani, Mohammad [Verfasser], and Ewald [Akademischer Betreuer] Schnug. "Comparative studies on the solubility of uranium and phosphorus in phosphate-fertilisers and their uranium transfer to plants / Mohammad Heshmati-Rafsanjani ; Betreuer: Ewald Schnug." Braunschweig : Technische Universität Braunschweig, 2009. http://d-nb.info/1175829714/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mupondi, Lushian Tapiwa. "Improving sanitization and fertiliser value of dairy manure and waste paper mixtures enriched with rock phosphate through combined thermophilic composting and vermicomposting." Thesis, University of Fort Hare, 2010. http://hdl.handle.net/10353/411.

Full text
Abstract:
Thermophilic composting (TC) and vermicomposting (V) are the two most common methods used for biological stabilization of solid organic wastes. Both have their advantages and disadvantages but the proposed method of combining composting and vermicomposting (CV) borrows pertinent attributes from each of the two methods and combines them to enhance overall process and product qualities. Dairy manure and waste paper are two wastes produced in large quantities at the University of Fort Hare. The study was carried out to address the following specific objectives, to determine (i) the effectiveness of combined thermophilic composting and vermicomposting on the biodegradation and sanitization of mixtures of dairy manure and paper waste, (ii) an optimum precomposting period for dairy manure paper waste mixtures that results in vermicomposts of good nutritional quality and whose use will not jeopardize human health, (iii) the effectiveness of phosphate rock (PR) in increasing available P and degradation and nutrient content of dairy manure-paper vermicomposts, (iv) the physicochemical properties of vermicompost substituted pine bark compost and performance of resultant growing medium on plant growth and nutrient uptake. Results of this study revealed that wastes with a C: N ratio of 30 were more suitable for both V and CV as their composts were more stabilized and with higher nutrient contents than composts made from wastes with a C: N ratio of 45. Both V and CV were effective methods for the biodegradation of dairy manure and paper waste mixtures with C: N ratio of 30 but the latter was more effective in the biodegradation of waste mixtures with a C: N ratio of 45. The combinination of composting and vermicomposting eliminated the indicator pathogen E. coli 0157 from the final composts whereas V only managed to reduce the pathogen population. iv A follow up study was done to determine the effects of precomposting on pathogen numbers so as to come up with a suitable precomposting period to use when combine composting dairy manure-waste paper mixtures. Results of this study showed that over 95% of fecal coliforms, E. coli and of E. coli 0157 were eliminated from the wastes within one week of precomposting and total elimination of these and protozoan (oo)cysts achieved after 3 weeks of precomposting. The vermicomposts pathogen content was related to the waste’s precomposting period. Final vermicomposts pathogen content was reduced and varied according to precomposting period. Vermicomposts from wastes precomposted for over two weeks were less stabilized, less humified and had less nutrient contents compared to vermicomposts from wastes that were precomposted for one week or less. The findings suggest that a precomposting period of one week is ideal for the effective vermicomposting of dairy manure-waste paper mixtures. Results of the P enrichment study indicated an increase in the inorganic phosphate and a reduction in the organic phosphate fractions of dairy manure-waste paper vermicompost that were enriched with PR. This implied an increase in mineralization of organic matter and or solubilization of PR with vermicomposting time. Applying PR to dairy manure-waste paper mixtures also enhanced degradation and had increased N and P contents of dairy manure-waste paper vermicomposts. Earthworms accumulated heavy metals in their bodies and reduced heavy metal contents of vermicomposts. A study to determine the physicochemical properties of vermicompost substituted pine bark compost and performance of resultant growing medium on plant growth and nutrient uptake was done. Results obtained revealed that increasing proportions of dairy manure vermicomposts in pine bark compost improved tomato plant height, stem girth, shoot and root dry weights. v Tomatoes grew best in the 40 to 60% CV substituted pine bark and application of Horticote (7:2:1 (22)) fertilizer significantly increased plant growth in all media. Progressive substitution pine bark with dairy manure vermicomposts resulted in a decrease in the percentage total porosity, percentage air space whilst bulk density, water holding capacity, particle density, pH, electrical conductivity and N and P levels increased. Precomposting wastes not only reduced and or eliminated pathogens but also improved the stabilisation and nutrient content of dairy manure waste paper mixtures. The application of PR to dairy manure waste paper mixtures improved the chemical and physical properties of vermicomposts. Earthworms bio-accumulated the heavy metals Cd, Cr, Cu, Pb and Zn whilst the contents of these in the vermicomposts declined. It is, therefore, recommended that dairy manure waste paper mixtures be precomposted for one week for sanitization followed by PR application and vermicomposting for stabilization and improved nutrients contents of resultant vermicomposts. Substitution of pine bark compost with 40 to 60 % PR-enriched vermicompost produced a growing medium with superior physical and chemical properties which supported good seedling growth. However, for optimum seedling growth, supplementation with mineral fertilizer was found to be necessary.
APA, Harvard, Vancouver, ISO, and other styles
10

Chakwizira, Emmanuel. "Growth and development of 'Pasja' and kale crops grown with two methods and four rates of phosphorus (P) application : a thesis submitted in partial fulfilment of the requirements for the degree of Masters [i.e. Master] of Agricultural Science at Lincoln University /." Diss., Lincoln University, 2008. http://hdl.handle.net/10182/929.

Full text
Abstract:
*‘Pasja’ (Brassica campestris x napus) and kale (Brassica oleracea var. acephala L.) were grown at Lincoln, Canterbury, New Zealand in 2008 with different levels of phosphorus (P) fertiliser. Banded or broadcast P fertiliser was applied at 0, 20, 40 and 60 kg P/ha at establishment. Total dry matter (DM) production, the proportion of the leaf and stem and leaf area development were measured over time and related to the biophysical environment. For ‘Pasja’, final DM increased with P rate from 3730 kg DM/ha to ~4900 kg DM/ha at 60 kg P/ha. For kale the increase was from 8710 kg DM/ha for the control to ~11000 kg DM/ha for all P treatments. The leaf to stem ratio declined from 22-31 at 17 days after emergence to 10.4 at the final harvest for ‘Pasja’, which meant the crop was effectively made up mainly of leaf (~90%). The ratio for kale declined from 2.7 at 24 days after emergence to 0.64 at the final harvest. The leaf to stem ratio for both species did not respond to either the method of application or rate of P. Seedling DM accumulation increased with applied P over the first 10 to 17 DAE for ‘Pasja’ and kale respectively. The crops went from shoot growth priority to root growth. The phyllochron of both species was unaffected by P application but responded linearly to the temperature above 0°C. For ‘Pasja’ the phyllochron was 60°Cd compared with 109°Cd for kale. As a consequence ‘Pasja’ developed its canopy and reached critical leaf area index (LAIcrit) earlier than kale. Leaf area index (LAI) for the control crops of both species was lower than for P fertiliser treatments with a maximum of 3.6 for ‘Pasja’ and 3.8 for kale. There was no difference in leaf area indices among the P fertiliser treatments for ‘Pasja’, while kale LAI differed with the rate of P application up to 40 kg P/ha. Total accumulated intercepted solar radiation (RIcum) was 8 and 11% greater for ‘Pasja’ and kale crops respectively when P was applied compared with the control. Thus, the difference in total dry matter yield due to P application was attributed to the difference in RIcum. Neither the method of application or rate of P applied affected the radiation use efficiency (RUE) of either crop. For ‘Pasja’ the RUE was 1.1 g DM/MJ PAR and for kale 1.33 g DM/MJ PAR. Based on this research, it was concluded that P application increased RIcum as a result of increased LAI. The difference in total DM yield was attributed to differences in RIcum. It is recommended that farmers growing ‘Pasja’ and kale under similar conditions to this experiment should apply 40 kg P/ha for ‘Pasja’ and band 20 kg P/ha for kale. *‘Pasja’ is considered both as a species and cultivar in this document as it marketed as such in New Zealand. Technically ‘Pasja’ is a leaf turnip.
APA, Harvard, Vancouver, ISO, and other styles
11

Heshmati-Rafsanjani, Mohammed [Verfasser]. "Comparative studies on the solubility of uranium and phosphorus in phosphate-fertilisers and their uranium transfer to plants / Mohammed Heshmati-Rafsanjani. Julius Kühn-Institut. Technische Universität Carolo-Wilhelmina zu Braunschweig, Fakultät für Lebenswissenschaften." Quedlinburg : Julius Kühn-Institut, 2009. http://d-nb.info/1105570789/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nobile, Cécile. "Phytodisponibilité du phosphore dans les sols agricoles de La Réunion fertilisés sur le long-terme avec des résidus organiques : la dose d’apport est-elle le seul déterminant à prendre en compte ?" Thesis, La Réunion, 2017. http://www.theses.fr/2017LARE0059/document.

Full text
Abstract:
Le recyclage des résidus organiques (RO) en agriculture pourrait permettre de limiter l’utilisation des ressources minérales de phosphore (P), à condition de déterminer leur efficacité pour fournir du P aux cultures. L’objectif de ce travail était donc d’étudier les mécanismes déterminant l’effet des RO apportés au sol sur la biodisponibilité du P pour la plante (phytodisponibilité). Ce travail a été basé sur cinq essais de terrain à La Réunion, fertilisés sur une décennie avec des fertilisants organiques ou minéraux, et sur des expérimentations d’incubations en conditions contrôlées et de cultures de plantes en pot. Le P inorganique (Pi) et organique (Po) disponible du sol a été déterminé par des extractions (eau, Olsen), la technique des diffusive gradients in thin films (DGT) et la dilution isotopique associée à des membranes échangeuses d’ions. La capacité de sorption en Pi des sols a été évaluée avec des courbes de sorption. Le P phytodisponible a été déterminé en mesurant le P prélevé par la plante. Dans les différents types de sol (andosol, andique cambisol, nitisol et arenosol), l’apport de RO a augmenté le Pi disponible relativement au Po, suggérant que la minéralisation du Po issu des RO n’est pas un facteur limitant la disponibilité du Pi. Les RO ont augmenté le Pi disponible principalement par l’augmentation du pH du sol et par conséquent la diminution de sa capacité de sorption de Pi. Le P phytodisponible a augmenté avec le Pi disponible du sol, mais a diminué avec l’augmentation du pH du sol. Au-delà de la dose de P, l’effet de l’apport de RO à long-terme sur la phytodisponibilité du P semble principalement contrôlé par l’évolution induite du pH du sol
Application of organic residues (OR) on agricultural soils could reduce the use of mineral phosphorus (P) fertilizers, but this implies to determine the efficiency of OR to meet crop requirements. We thus aimed to study mechanisms determining the effects of OR on P bioavailability to plants (phytoavailability). Our work was based on five field trials with decadal organic or mineral fertilization located in Réunion island, and on incubations and plant growth experiments under controlled conditions. Available inorganic P (Pi) and organic P (Po) was determined using extractions (water, Olsen), the diffusive gradients in thin films technique (DGT) and the isotopic dilution associated to anion exchange membranes (EAEM). Phytoavailable P was determined as the plant P uptake. Soil Pi sorption capacity was determined using sorption curves. For all soil types studied (andosol, andic cambisol, nitisol, and arenosol), RO increased mainly available Pi and had few effects on available Po, which suggests that mineralization of Po applied with RO does not limit Pi availability. Application of RO increased available Pi mainly by increasing soil pH and consequently by decreasing soil Pi sorption capacity. Phytoavailable P increased with soil available Pi, but decreased with increasing soil pH. Our work suggests that except the dose of P applied, effect of RO on P phytoavailability depends mainly on soil pH changes induced
APA, Harvard, Vancouver, ISO, and other styles
13

McBeath, Therese. "Chemical reactions of polyphosphate fertilisers in soils and solutions." 2006. http://hdl.handle.net/2440/59455.

Full text
Abstract:
Polyphosphates have been shown to offer substantial agronomic benefits over traditional granular phosphorus (P) fertilisers in highly calcareous soils of southern Australia. With ongoing field investigations into the efficiency of polyphosphate fertilisers compared to fluid and granular orthophosphate (OP) fertiliser products, a need developed for detailed study of the mechanisms responsible for the enhanced efficiency of polyphosphate fertilisers in Australian soil types. Polyphosphates provide an analytical challenge as they contain chemically different forms of phosphate compared to most fertilisers, where P occurs entirely as OP. An investigation was conducted into the most suitable method for the speciation, quantification and separation of the P species supplied in polyphosphate fertilisers. While the conventionally used colorimetric technique was comparable to ion chromatography (IC) for quantification of OP, it did not provide the speciation and separation capabilities of IC. Polyphosphate fertilisers are thermodynamically unstable and hydrolyse to more simple forms of phosphate: this can be induced both chemically and biologically. A study was undertaken using IC to ascertain the effects of time, temperature and acidity on the stability of polyphosphate fertiliser formulations. All of these factors affected the stability of polyphosphate fertilisers and recommendations on storage of the product and mixtures with other fluid fertilisers can now be developed. Stability of PP in soils was assessed using solid-state speciation by solid-state ³¹P-nuclear magnetic resonance (NMR). Hydrolysis of both solution and solid-phase PP could be quantified using the NMR technique, and results using this method were compared to conventional techniques, which extract OP and PP into aqueous phases and use IC to assess the extent of PP hydrolysis. The concentrations of OP and PP determined by the extraction technique were lower than those determined by NMR, and consequently the proportion of undetected P was greater for IC than for NMR. There is disagreement in the literature as to the differences in partitioning behaviour (sorption/precipitation) of OP and PP in soil. A partitioning study was undertaken using the IC technique for aqueous P speciation. Retention of PP to soil solid phases was much stronger than OP, and addition of PP to soil resulted in greater concentrations of OP in the equilibrating solutions, indicating a possible competition for P sorption sites between PP and OP. A double labelling technique was developed where OP was labelled with ³³OP and PP was labelled with ³²PP. This technique was used to investigate the effects of time and concentration on the lability and partitioning of OP and PP in soils. Using this dual labeling technique it was possible to determine the hydrolysis of added PP, and to distinguish OP derived from hydrolysis of PP from native OP in soil. The dissolution of dissolved organic carbon, iron and aluminium and the sorption/precipitation of calcium as a result of addition of PP were assessed and related to changes in the lability of P supplied as PP and OP. This double labelling technique was further developed to assess the possibility of mobilisation of native OP by addition of PP to soil. The findings of this thesis indicate that the hydrolysis reaction is pivotal to the behaviour of the P species that constitute a polyphosphate fertiliser in soils. Investigations of isotopic exchangeability showed that while native P mobilisation was not detected, slow reactions of PP in soil including sorption, potentially desorption, and hydrolysis underpin the potential availability of PP in soil.
Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2006.
APA, Harvard, Vancouver, ISO, and other styles
14

Mlalazi, Mthandazo. "Nitrophosphate as an alternative phosphate fertiliser for acidic sandy soils." Diss., 2016. http://hdl.handle.net/2263/57262.

Full text
Abstract:
It is a common practice to use large quantities of reduced nitrogen (N) such as urea, ammonia (NH3) and ammonium (NH4+) as pre-plant (before planting) fertilisers in the Free State, Mpumalanga and North West where farmers apply monoammonium phosphate (MAP(33)) together with urea before planting. However, MAP(33) a source of phosphorous (P), which is pre-applied resulted in soil acidification, the accumulation of NH4+ and loss of cations. Nitrophosphate was therefore suggested as an alternative phosphate fertiliser to remedy low P use efficiency, soil acidity and to replace lost calcium (Ca) and magnesium (Mg). A study was conducted with the aim to compare nitrophosphate with MAP(33) when used as pre-plant fertilisers in acidic sandy soils commonly found in commercial agriculture. To meet this aim, two greenhouse experiments were conducted at the research facilities of Omnia (Pty) Ltd in Sasolburg, South Africa in 2013. The biomass, residual soil nutrient status and nutrient uptake of potted wheat plants were compared when fertilised with nitrophosphate and MAP(33). The experiments consisted of a completely randomised design (CRD) with two P fertiliser sources (nitrophosphate and MAP(33)), applied at four different rates (0, 15, 30 and 45 kg P ha-1) replicated five times. Urea was added to all treatments, except the controls, to ensure that all treatments received the same amount (106 kg N ha-1) of nitrogen (N). Micronutrients were supplied by topdressing with HIDROSPOOR at a rate of 2 kg ha-1. For the experiments wheat was planted in an acidic sandy soil (pHKCl of 4.1) collected from a commercial farm in Bothaville with a low Bray-1 P (15 mg kg-1), S (13 mg kg-1), ammonium acetate extractable Ca (79 mg kg-1) content and 5% clay. Results from the study indicated that the pH of soils treated with MAP(33) was higher than the pH of soils treated with nitrophosphate. The leaves of MAP(33) fertilised wheat had a consistently higher chlorophyll content than the leaves of nitrophosphate fertilised wheat, except for the period 2-3 weeks after emergence (WAE). MAP(33) fertilised wheat had 108% (first trial) and 105% (second trial) more root growth and 96% (first trial) and 167% (second trial) more leaf growth compared to nitrophosphate fertilised wheat. MAP(33) also resulted in higher sulphur (S), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), copper (Cu), manganese (Mn), zinc (Zn) and iron (Fe) uptake. There was a strong correlation (R2 = 0.81) between soil pHKCl and root growth where the lower soil pH resulted in impaired root development which adversely affected wheat growth and nutrient uptake. The secondary nutrients associated with nitrophosphate therefore did not improve wheat growth. Results from the experiments indicated that the MAP(33) treatments resulted in lower concentrations of S, N, K, Cu, Mn, Zn, Fe and Mo in the dry leaf matter than nitrophosphate treatments. The results of this study suggests nitrophosphate is not the preferable fertiliser to substitute MAP(33) as a pre-plant fertiliser in soils with a low pH. However, under less acidic soil conditions (pH 6.5) nitrophosphate resulted in better growth than MAP(33).
Dissertation (MSc Agric)--University of Pretoria, 2016.
tm2016
Plant Production and Soil Science
MSc Agric
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
15

Shaw, Scott Robert. "Phosphate rock fertilisers to enhance soil P status and P nutrition on organic cropping farms : a thesis presented in partial fulfilment of the requirements for the degree of Master of Plant Science at Massey University." 2009. http://hdl.handle.net/10179/1335.

Full text
Abstract:
The soils used by the East Coast Organic Producers Trust (ECOPT; the grower group that this study is targeted towards) have exceptionally low soil Olsen P concentrations (ca. 6 mg/L). These and other limitations (e.g. poor weed and pest and disease control) result in many ECOPT growers being unable to produce economic yields on anything other than small scale gardens. Fertilisers and manures are seldom used by these growers, which exacerbates the problem. Thus, the object of this research was to provide information to ECOPT on which fertilisers and application strategies would provide the best returns on their phosphorus (P) fertiliser investment. The experimental work was carried out in two parts. A laboratory study tested a range of phosphate rock (PR) based fertilisers and application rates; Ben Guerir reactive phosphate rock (RPR; 67, 133, 267, 533 and 1,333 mg P/kg soil), BioPhos and BioSuper (267 and 1,333 mg P/kg soil) and a no fertiliser Control. Soil fertiliser mixtures were incubated for 155 days and periodic measurements of PR dissolution, soil pH and Bic-P (analogous to Olsen P but expressed in µg/g) were undertaken. The field study used fewer application rates and two application methods; banded and broadcast. Broadcast plots were applied at 678 mg P/kg soil (488 kg P/ha); banded RPR was applied at 236, 678 and 1475 mg P/kg soil (40, 115 and 250 kg P/ha respectively) and banded BioPhos and BioSuper at 678 mg P/kg soil (115 kg P/ha). A Control was also included. Fertilisers were applied in October 2004 and changes in soil pH and Bic-P were measured in the broadcast plots only over a 344 day period. Potato (Solanum tuberosum L. cv. Desiree) was the test crop. Regression analysis was used to generate exponential equations to describe the changes in Bic-P over time (∆Bic-P). Differences between fertilisers in the amount of P dissolved and pH fluxes were used to explain the differences in ∆Bic-P. BioSuper dissolved quicker and generated greater ∆Bic-P than RPR and BioPhos, which were similar. Higher application rates produced greater increases in Bic-P than lower rates but decreased the % of P applied that dissolved. The increase in Bic-P over time from fertiliser application was much slower in the field compared with the laboratory. This was put down to differences in experimental conditions; mainly soil pH and soil aggregate surface area. Potato tuber yield (mean = 35 t/ha) did not respond to any of the fertiliser treatments despite a significant increase in P concentration of the shoots mid-way through the season in all broadcast treatments (shoot P concentration was not analysed in the banded plots). Water and N availability were the main limiting factors in this season as the crop was not irrigated and soil N supply was insufficient to produce a full canopy. Phosphorus response curves generated using the fertiliser response model PARJIB (Reid, 2002), and an economic analysis, indicated that for RPR and BioPhos the optimum economic application rate was 200 kg P/ha and for BioSuper it was 100 kg P/ha (applied every third and second year respectively).
APA, Harvard, Vancouver, ISO, and other styles
16

Sattouf, Mamdoh. "Identifying the origin of rock phosphates and phosphorus fertilisers using isotope ratio techniques and heavy metal patterns /." 2007. http://www.gbv.de/dms/bs/toc/543855309.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography