Journal articles on the topic 'Phosphopeptide enrichment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phosphopeptide enrichment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mullis, B. Todd, Sunil Hwang, L. Andrew Lee, et al. "Automating Complex, Multistep Processes on a Single Robotic Platform to Generate Reproducible Phosphoproteomic Data." SLAS DISCOVERY: Advancing the Science of Drug Discovery 25, no. 3 (2019): 277–86. http://dx.doi.org/10.1177/2472555219878152.
Full textMaccarrone, Giuseppina, Nikolaus Kolb, Larysa Teplytska, et al. "Phosphopeptide enrichment by IEF." ELECTROPHORESIS 27, no. 22 (2006): 4585–95. http://dx.doi.org/10.1002/elps.200600145.
Full textDing, Fengjuan, Yameng Zhao, Haiyan Liu, and Weibing Zhang. "Core–shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides." Analyst 145, no. 12 (2020): 4341–51. http://dx.doi.org/10.1039/d0an00038h.
Full textOndrej, Martin, Pavel Rehulka, Helena Rehulkova, Rudolf Kupcik, and Ales Tichy. "Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC–MS/MS Analysis." International Journal of Molecular Sciences 21, no. 11 (2020): 3971. http://dx.doi.org/10.3390/ijms21113971.
Full textHou, Junjie, Zhensheng Xie, Peng Xue, et al. "Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix." Journal of Biomedicine and Biotechnology 2010 (2010): 1–12. http://dx.doi.org/10.1155/2010/759690.
Full textPalmisano, Giuseppe, Benjamin L. Parker, Kasper Engholm-Keller, et al. "A Novel Method for the Simultaneous Enrichment, Identification, and Quantification of Phosphopeptides and Sialylated Glycopeptides Applied to a Temporal Profile of Mouse Brain Development." Molecular & Cellular Proteomics 11, no. 11 (2012): 1191–202. http://dx.doi.org/10.1074/mcp.m112.017509.
Full textGokmen-Polar, Yesim, Jason D. True, Edyta Vieth, Guihong D. Qi, Amber L. Mosley, and Sunil S. Badve. "Phosphopeptide mapping of DLC1 in ER+ breast cancer reveals AMOTL2, a key hippo pathway component, as an important target." Journal of Clinical Oncology 35, no. 15_suppl (2017): 11592. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.11592.
Full textSandison, Mairi E., K. Tveen Jensen, F. Gesellchen, J. M. Cooper, and A. R. Pitt. "Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment." Analyst 139, no. 19 (2014): 4974–81. http://dx.doi.org/10.1039/c4an00750f.
Full textLeitner, Alexander. "Phosphopeptide enrichment using metal oxide affinity chromatography." TrAC Trends in Analytical Chemistry 29, no. 2 (2010): 177–85. http://dx.doi.org/10.1016/j.trac.2009.08.007.
Full textBeltran, Luisa, and Pedro R. Cutillas. "Advances in phosphopeptide enrichment techniques for phosphoproteomics." Amino Acids 43, no. 3 (2012): 1009–24. http://dx.doi.org/10.1007/s00726-012-1288-9.
Full textLi, Liping, Shuai Chen, Linnan Xu, et al. "Template-free synthesis of uniform mesoporous SnO2 nanospheres for efficient phosphopeptide enrichment." J. Mater. Chem. B 2, no. 9 (2014): 1121–24. http://dx.doi.org/10.1039/c3tb21617a.
Full textYan, Yinghua, Yujie Lu, Mengying Chen, and Hongze Liang. "A novel IMAC platform – adenosine coupled functional magnetic microspheres for phosphoproteome research." Analytical Methods 10, no. 10 (2018): 1190–95. http://dx.doi.org/10.1039/c7ay02931d.
Full textLi, Xiao-Shui, Bi-Feng Yuan, and Yu-Qi Feng. "Recent advances in phosphopeptide enrichment: Strategies and techniques." TrAC Trends in Analytical Chemistry 78 (April 2016): 70–83. http://dx.doi.org/10.1016/j.trac.2015.11.001.
Full textKrenkova, Jana, and Frantisek Foret. "Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment." Analytical and Bioanalytical Chemistry 405, no. 7 (2012): 2175–83. http://dx.doi.org/10.1007/s00216-012-6358-z.
Full textWarthaka, Mangalika, Paulina Karwowska-Desaulniers, and Mary Kay H. Pflum. "Phosphopeptide Modification and Enrichment by Oxidation–Reduction Condensation." ACS Chemical Biology 1, no. 11 (2006): 697–701. http://dx.doi.org/10.1021/cb6003564.
Full textHan, Guanghui, Mingliang Ye, and Hanfa Zou. "Development of phosphopeptide enrichment techniques for phosphoproteome analysis." Analyst 133, no. 9 (2008): 1128. http://dx.doi.org/10.1039/b806775a.
Full textHung, Chien-Wen, Dieter Kübler, and Wolf D. Lehmann. "pI-based phosphopeptide enrichment combined with nanoESI-MS." ELECTROPHORESIS 28, no. 12 (2007): 2044–52. http://dx.doi.org/10.1002/elps.200600678.
Full textZhang, Xumin, Juanying Ye, Ole N. Jensen, and Peter Roepstorff. "Highly Efficient Phosphopeptide Enrichment by Calcium Phosphate Precipitation Combined with Subsequent IMAC Enrichment." Molecular & Cellular Proteomics 6, no. 11 (2007): 2032–42. http://dx.doi.org/10.1074/mcp.m700278-mcp200.
Full textHong, Yayun, Chenlu Pu, Hongli Zhao, Qianying Sheng, Qiliang Zhan, and Minbo Lan. "Yolk–shell magnetic mesoporous TiO2 microspheres with flowerlike NiO nanosheets for highly selective enrichment of phosphopeptides." Nanoscale 9, no. 43 (2017): 16764–72. http://dx.doi.org/10.1039/c7nr05330d.
Full textYi, Linhua, Yinghua Yan, Keqi Tang, and Chuan-Fan Ding. "Facile preparation of polymer-grafted ZIF-8-modified magnetic nanospheres for effective identification and capture of phosphorylated and glycosylated peptides." Analytical Methods 12, no. 38 (2020): 4657–64. http://dx.doi.org/10.1039/d0ay01412e.
Full textAhmed, Adnan, Vijay J. Raja, Paola Cavaliere, and Noah Dephoure. "Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate." Journal of Proteome Research 18, no. 3 (2018): 1411–17. http://dx.doi.org/10.1021/acs.jproteome.8b00883.
Full textSUI, S., J. WANG, Z. LU, et al. "Phosphopeptide enrichment strategy based on strong cation exchange chromatography." Chinese Journal of Chromatography 26, no. 2 (2008): 195–99. http://dx.doi.org/10.1016/s1872-2059(08)60012-7.
Full textYu, Ying-Qing, Jennifer Fournier, Martin Gilar, and John C. Gebler. "Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction." Journal of Separation Science 32, no. 8 (2009): 1189–99. http://dx.doi.org/10.1002/jssc.200800652.
Full textKrenkova, Jana, Jaroslava Moravkova, Jan Buk, and Frantisek Foret. "Phosphopeptide enrichment with inorganic nanofibers prepared by forcespinning technology." Journal of Chromatography A 1427 (January 2016): 8–15. http://dx.doi.org/10.1016/j.chroma.2015.12.022.
Full textYue, Guihua Eileen, Michael G. Roper, Catherine Balchunas, et al. "Protein digestion and phosphopeptide enrichment on a glass microchip." Analytica Chimica Acta 564, no. 1 (2006): 116–22. http://dx.doi.org/10.1016/j.aca.2005.11.003.
Full textYan, Shuang, Bin Luo, Jia He, Fang Lan, and Yao Wu. "Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment." Journal of Materials Chemistry B 9, no. 7 (2021): 1811–20. http://dx.doi.org/10.1039/d0tb02517h.
Full textTóth, Gábor, Fanni Bugyi, Simon Sugár, et al. "Selective TiO2 Phosphopeptide Enrichment of Complex Samples in the Nanogram Range." Separations 7, no. 4 (2020): 74. http://dx.doi.org/10.3390/separations7040074.
Full textKume, Akinori, Akina Sasayama, Tetsuo Kaneko, Junichi Kurisaki та Munehiro Oda. "A simple competitive enzyme-linked immunosorbent assay for the specific detection of the multiphosphorylated 1–25 β-casein fragment". Journal of Dairy Research 80, № 3 (2013): 326–33. http://dx.doi.org/10.1017/s0022029913000162.
Full textTape, Christopher J., Jonathan D. Worboys, John Sinclair, et al. "Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO2 and Ti-IMAC." Analytical Chemistry 86, no. 20 (2014): 10296–302. http://dx.doi.org/10.1021/ac5025842.
Full textKupcik, Rudolf, Jan M. Macak, Helena Rehulkova, et al. "Amorphous TiO2Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment." ACS Omega 4, no. 7 (2019): 12156–66. http://dx.doi.org/10.1021/acsomega.9b00571.
Full textWang, Wei-Han, and Merlin L. Bruening. "Phosphopeptide enrichment on functionalized polymer microspots for MALDI-MS analysis." Analyst 134, no. 3 (2009): 512–18. http://dx.doi.org/10.1039/b815598d.
Full textLi, Qing-run, Zhi-bin Ning, Jia-shu Tang, Song Nie, and Rong Zeng. "Effect of Peptide-to-TiO2Beads Ratio on Phosphopeptide Enrichment Selectivity." Journal of Proteome Research 8, no. 11 (2009): 5375–81. http://dx.doi.org/10.1021/pr900659n.
Full textZhao, Yanyan, Xiuling Li, Jingyu Yan, Zhimou Guo, and Xinmiao Liang. "Phosphopeptide enrichment and fractionation by using Click OEG-CD matrix." Analytical Methods 4, no. 5 (2012): 1244. http://dx.doi.org/10.1039/c2ay05915k.
Full textBatalha, Iris L., Houjiang Zhou, Kathryn Lilley, Christopher R. Lowe, and Ana C. A. Roque. "Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands." Journal of Chromatography A 1457 (July 2016): 76–87. http://dx.doi.org/10.1016/j.chroma.2016.06.032.
Full textLeitner, Alexander, Martin Sturm, Jan-Henrik Smått, et al. "Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment." Analytica Chimica Acta 638, no. 1 (2009): 51–57. http://dx.doi.org/10.1016/j.aca.2009.01.063.
Full textDunn, Jamie D., Elizabeth A. Igrisan, Amanda M. Palumbo, Gavin E. Reid, and Merlin L. Bruening. "Phosphopeptide Enrichment Using MALDI Plates Modified with High-Capacity Polymer Brushes." Analytical Chemistry 80, no. 15 (2008): 5727–35. http://dx.doi.org/10.1021/ac702472j.
Full textMirza, Munazza Raza, Matthias Rainer, Yüksel Güzel, Iqbal M. Choudhary, and Günther K. Bonn. "A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation." Analytical and Bioanalytical Chemistry 404, no. 3 (2012): 853–62. http://dx.doi.org/10.1007/s00216-012-6215-0.
Full textTsougeni, Katerina, Panagiotis Zerefos, Angeliki Tserepi, Antonia Vlahou, Spiros D. Garbis, and Evangelos Gogolides. "TiO2–ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation." Lab on a Chip 11, no. 18 (2011): 3113. http://dx.doi.org/10.1039/c1lc20133f.
Full textBAI, Yu, LinNan XU, and HuWei LIU. "Amino-functionalized monolithic tips for rapid phosphopeptide enrichment with tunable selectivity." SCIENTIA SINICA Vitae 48, no. 2 (2017): 207–14. http://dx.doi.org/10.1360/n052017-00171.
Full textMurillo, Jimmy Rodriguez, Magdalena Kuras, Melinda Rezeli, Tasso Milliotis, Lazaro Betancourt, and Gyorgy Marko-Varga. "Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue." PLOS ONE 13, no. 12 (2018): e0208562. http://dx.doi.org/10.1371/journal.pone.0208562.
Full textNegroni, Luc, Stephane Claverol, Jean Rosenbaum, Eric Chevet, Marc Bonneu, and Jean-Marie Schmitter. "Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography." Journal of Chromatography B 891-892 (April 2012): 109–12. http://dx.doi.org/10.1016/j.jchromb.2012.02.028.
Full textChen, Jing, Sudhirkumar Shinde, Prabal Subedi, et al. "Validation of molecularly imprinted polymers for side chain selective phosphopeptide enrichment." Journal of Chromatography A 1471 (November 2016): 45–50. http://dx.doi.org/10.1016/j.chroma.2016.10.018.
Full textWu, Ting, Jiani Shi, Chuanjing Zhang, Lingfan Zhang, and Yiping Du. "Highly specific phosphopeptide enrichment by titanium(IV) cross-linked chitosan composite." Journal of Chromatography B 1008 (January 2016): 234–39. http://dx.doi.org/10.1016/j.jchromb.2015.11.051.
Full textZhang, Haiyang, Xiaowei Li, Shujuan Ma, Junjie Ou, Yinmao Wei, and Mingliang Ye. "One-step preparation of phosphate-rich carbonaceous spheres via a hydrothermal approach for phosphopeptide analysis." Green Chemistry 21, no. 8 (2019): 2052–60. http://dx.doi.org/10.1039/c8gc03706j.
Full textZhu, Gang-Tian, Xiao-Mei He, Sheng He, Xi Chen, Shu-Kui Zhu, and Yu-Qi Feng. "Synthesis of Polyethylenimine Functionalized Mesoporous Silica for In-Pipet-Tip Phosphopeptide Enrichment." ACS Applied Materials & Interfaces 8, no. 47 (2016): 32182–88. http://dx.doi.org/10.1021/acsami.6b10948.
Full textTan, Yu-Jing, Dexin Sui, Wei-Han Wang, Min-Hao Kuo, Gavin E. Reid, and Merlin L. Bruening. "Phosphopeptide Enrichment with TiO2-Modified Membranes and Investigation of Tau Protein Phosphorylation." Analytical Chemistry 85, no. 12 (2013): 5699–706. http://dx.doi.org/10.1021/ac400198n.
Full textMurillo, Jimmy Rodriguez, Magdalena Kuras, Melinda Rezeli, Tasso Miliotis, Lazaro Betancourt, and Gyorgy Marko-Varga. "Correction: Automated phosphopeptide enrichment from minute quantities of frozen malignant melanoma tissue." PLOS ONE 13, no. 12 (2018): e0210234. http://dx.doi.org/10.1371/journal.pone.0210234.
Full textWan, Huihui, Jingyu Yan, Long Yu, et al. "Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment." Talanta 82, no. 5 (2010): 1701–7. http://dx.doi.org/10.1016/j.talanta.2010.07.050.
Full textLi, Wangwang, Qiliang Deng, Guozhen Fang, Yang Chen, Jie Zhan, and Shuo Wang. "Facile synthesis of Fe3O4@TiO2–ZrO2 and its application in phosphopeptide enrichment." Journal of Materials Chemistry B 1, no. 14 (2013): 1947. http://dx.doi.org/10.1039/c3tb20127a.
Full textAbelin, Jennifer G., Paisley D. Trantham, Sarah A. Penny, et al. "Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry." Nature Protocols 10, no. 9 (2015): 1308–18. http://dx.doi.org/10.1038/nprot.2015.086.
Full text