To see the other types of publications on this topic, follow the link: Photocatalyse.

Journal articles on the topic 'Photocatalyse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photocatalyse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

-Colbeau-Justin, C. "Dépollution par photocatalyse." Revue de l'Electricité et de l'Electronique -, no. 04 (2003): 85. http://dx.doi.org/10.3845/ree.2003.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Yang, Di Wu, Xiao Jia, Binbin Yu та Sihui Zhan. "Core-Shell Nanostructure ofα-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl Orange". Journal of Nanomaterials 2011 (2011): 1–5. http://dx.doi.org/10.1155/2011/837123.

Full text
Abstract:
Fe3O4nanoparticle was synthesized in the solution involving water and ethanol. Then,α-Fe2O3shell was produced in situ on the surface of theFe3O4nanoparticle by surface oxidation in molten salts, formingα-Fe2O3/Fe3O4core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primaryFe3O4nanoparticles were oxidized. Furthermore, the obtainedα-Fe2O3/Fe3O4core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed thatα-Fe2O3/Fe3O4nanoparticles were more efficient than the self-prep
APA, Harvard, Vancouver, ISO, and other styles
3

Pichat, P. "Purification d'air par photocatalyse hétérogène." Le Journal de Physique IV 11, PR7 (2001): Pr7–141—Pr7–144. http://dx.doi.org/10.1051/jp4:2001745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mansouri, L., L. Bousselmi, and A. Ghrabi. "Degradation of recalcitrant organic contaminants by solar photocatalysis." Water Science and Technology 55, no. 12 (2007): 119–25. http://dx.doi.org/10.2166/wst.2007.397.

Full text
Abstract:
Biological pre-treated landfill leachates of Djebel Chakir contains some macromolecular organic substances that are resistant to biological degradation. The aim of the present work is to assess the feasibility of removing refractory organic pollutants in biological pre-treated landfill leachate by solar photocatalyse process. Leachate pollutant contents are studied to assess their contribution to leachate pollution and their treatability by solar photocatalyse process. Phenol is chosen as model of pollutants, to evaluate its removal and the efficiency of the photocatalytic system. The experime
APA, Harvard, Vancouver, ISO, and other styles
5

Chuaicham, Chitiphon, Jirawat Trakulmututa, Kaiqian Shu, et al. "Recent Clay-Based Photocatalysts for Wastewater Treatment." Separations 10, no. 2 (2023): 77. http://dx.doi.org/10.3390/separations10020077.

Full text
Abstract:
Photocatalysis is a remarkable methodology that is popular and applied in different interdisciplinary research areas such as the degradation of hazardous organic contaminants in wastewater. In recent years, clay-based photocatalyst composites have attracted significant attention in the field of photocatalysis owing to their abundance, excellent light response ability, and stability. This review describes the combination of clay with focusing photocatalysts such as TiO2, g-C3N4, and Bi-based compounds for degrading organic pollutants in wastewater. Clay-based composites have more active surface
APA, Harvard, Vancouver, ISO, and other styles
6

Komtchou, Simon, Ahmad Dirany, Patrick Drogui, and Pierre Lafrance. "Application des procédés d’oxydation avancée pour le traitement des eaux contaminées par les pesticides – revue de littérature." Revue des sciences de l’eau 29, no. 3 (2017): 231–62. http://dx.doi.org/10.7202/1038926ar.

Full text
Abstract:
Les pesticides sont des substances chimiques et naturelles destinées à détruire, combattre ou repousser les organismes indésirables ou nuisibles qui causent des dommages aux cultures et produits agricoles. Leur utilisation permet aussi d’entretenir les espaces publics et les voies ferrées. Ces utilisations multiples des pesticides expliquent leur présence dans divers compartiments environnementaux comme l’eau, les sols et l’air. Cette présence dans l’environnement a des conséquences néfastes sur les êtres vivants, en particulier chez l’Homme où l’exposition aux pesticides peut causer des malad
APA, Harvard, Vancouver, ISO, and other styles
7

Rocha, Rafael Lisandro P., Luzia Maria C. Honorio, Roosevelt Delano de S. Bezerra, et al. "Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants." Minerals 12, no. 5 (2022): 525. http://dx.doi.org/10.3390/min12050525.

Full text
Abstract:
This review focuses on a reasoned search for articles to treat contaminated water using hydroxyapatite (HAp)-based compounds. In addition, the fundamentals of heterogeneous photocatalysis were considered, combined with parameters that affect the pollutants’ degradation using hydroxyapatite-based photocatalyst design and strategies of this photocatalyst, and the challenges of and perspectives on the development of these materials. Many critical applications have been analyzed to degrade dyes, drugs, and pesticides using HAp-based photocatalysts. This systematic review highlights the recent stat
APA, Harvard, Vancouver, ISO, and other styles
8

You, Wei. "Research Progresses and Development Trends of High-Efficacy Photocatalysts." Applied Mechanics and Materials 496-500 (January 2014): 532–35. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.532.

Full text
Abstract:
Progresses of research on high-efficacy photocatalyst were introduced in this paper. Firstly, efficiency-strengthening methods of TiO2-serie photocatalysts were summarized basing on collected literatures, including photosensitization, alloying, moreover, novel photocatalysis materials and technologies and probable development tendencies in the future were introduced, such as broad-spectrum photocatalysts, broad-energy and energy-sensitive catalysts and high-efficacy controllable high-power photocatalysis materials and equipments.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Shifa, Peilin Mo, Dengfeng Li, and Asad Syed. "Intelligent Algorithms Enable Photocatalyst Design and Performance Prediction." Catalysts 14, no. 4 (2024): 217. http://dx.doi.org/10.3390/catal14040217.

Full text
Abstract:
Photocatalysts have made great contributions to the degradation of pollutants to achieve environmental purification. The traditional method of developing new photocatalysts is to design and perform a large number of experiments to continuously try to obtain efficient photocatalysts that can degrade pollutants, which is time-consuming, costly, and does not necessarily achieve the best performance of the photocatalyst. The rapid development of photocatalysis has been accelerated by the rapid development of artificial intelligence. Intelligent algorithms can be utilized to design photocatalysts a
APA, Harvard, Vancouver, ISO, and other styles
10

Gebrati, L., L. Loukili Idrissi, Y. Mountassir, and A. Nejmeddine. "Détoxication des effluents d’industrie de textile par photocatalyse." Environmental Technology 31, no. 6 (2010): 625–32. http://dx.doi.org/10.1080/09593331003592253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Blangis, David, and Bernard Legube. "Traitement des eaux de pluie par photocatalyse solaire." European journal of water quality 38, no. 2 (2007): 121–30. http://dx.doi.org/10.1051/wqual/2007002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yanda, Bhupesh Pydiraju, Dharani Sathwik Ram Panchagnula, Terry J. Gentry, and Sreeram Vaddiraju. "Photocatalysis-Assisted Water Remediation Using Porous Nanowire Foams." Water 17, no. 4 (2025): 462. https://doi.org/10.3390/w17040462.

Full text
Abstract:
Deployment of photocatalysis for water disinfection necessitates engineering the process kinetics and achieving the complete recovery of the photocatalyst following the remediation of water. The recovery of the photocatalysts, especially nanostructured photocatalysts, remains a challenge, as indicated by a previous study by our group where only 57% of TiO2 nanowires were recovered by gravity-assisted settling and sedimentation from water after its photocatalysis-assisted E. coli inactivation. To overcome this challenge, a novel method involving the use of photocatalysts in the form of porous f
APA, Harvard, Vancouver, ISO, and other styles
13

Constantin, Lucian Alexandru, Mirela Alina Constantin, Ines Nitoi, Toma Galaon, and Ionut Cristea. "Screening experiments on flutamide degradation via TiO2 assisted photocatalyse." SIMI 2019, Abstract Book, SIMI 2019 (September 20, 2019): 44–45. http://dx.doi.org/10.21698/simi.2019.ab15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

George, Christian. "La photocatalyse pour purifier l'air ambiant - mythe ou réalité ?" La Météorologie, no. 111 (2020): 041. http://dx.doi.org/10.37053/lameteorologie-2020-0091.

Full text
Abstract:
Afin d'améliorer la qualité de l'air en milieu urbain, il convient en premier lieu de réduire les émissions polluantes. Cependant, différentes solutions techniques ont été proposées afin de dégrader certains polluants comme les oxydes d'azote (NOx ) ou les composés organiques volatils (COV). L'une d'entre elles repose sur l'emploi du bâti urbain recouvert de matériaux ou enduits photocatalytiques, lui conférant une certaine réactivité de manière à induire un puits chimique pour ces polluants. Différents tests, dont certains d'ampleur, ont été menés, aboutissant parfois à des résultats contradi
APA, Harvard, Vancouver, ISO, and other styles
15

Prakash, Jai. "Mechanistic Insights into Graphene Oxide Driven Photocatalysis as Co-Catalyst and Sole Catalyst in Degradation of Organic Dye Pollutants." Photochem 2, no. 3 (2022): 651–71. http://dx.doi.org/10.3390/photochem2030043.

Full text
Abstract:
Photocatalysis is a promising route to utilize sunlight, which has been potentially used to solve energy as well as environmental problems with an emphasis on fundamental understanding and technological applications in society. Semiconductors are excellent photocatalysts but often show less efficient activities due to the fast recombination of photogenerated charge carriers and very slow kinetics of surface photochemical reactions. However, recent advancements show promising strategies to improve their photocatalytic activities, including surface modifications using suitable co-catalysts and t
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Xue, Ulla Simon, Maged F. Bekheet, and Aleksander Gurlo. "Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications." Energies 15, no. 15 (2022): 5607. http://dx.doi.org/10.3390/en15155607.

Full text
Abstract:
Although they are of significant importance for environmental applications, the industrialization of photocatalytic techniques still faces many difficulties, and the most urgent concern is cost control. Natural minerals possess abundant chemical inertia and cost-efficiency, which is suitable for hybridizing with various effective photocatalysts. The use of natural minerals in photocatalytic systems can not only significantly decrease the pure photocatalyst dosage but can also produce a favorable synergistic effect between photocatalyst and mineral substrate. This review article discusses the c
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Bin, Xin Yi Wang, and Xiao Gang Yang. "Effect of Mixing Ratio and Doping Acid on the Photocatalytic Properties of PANI-BiVO4 Composites." Key Engineering Materials 727 (January 2017): 866–69. http://dx.doi.org/10.4028/www.scientific.net/kem.727.866.

Full text
Abstract:
BiVO4 photocatalyst prepared by hydrothermal method was mixed with polyaniline (PANI). The phase structure, morphology and optical properties of PANI-BiVO4 photocatalysts were analyzed through X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). The results showed that the optimal preparation conditions of composite photocatalyst were 0.5wt.% PANI mixing ratio and H3PO4 as doping acid. The photocatalysis degradation rate is the highest. This new heterogeneous structure photocatalyst is expected to show considerably potential application
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmad, Abdul Latif, Jing Yi Chin, Abdul Majeed Alaudin, and Norhanis Farhana Mohd Masri. "Influence of TiO2 Phases and Operational Parameters on Photocatalytic Degradation of Methyl Orange." Journal of Physical Science 35, no. 2 (2024): 65–82. http://dx.doi.org/10.21315/jps2024.35.2.5.

Full text
Abstract:
In the textile industry, the wastewater produced consists of large amount of dyes. These dyes possess harm to environmental and public health. TiO2 is one of the most common photocatalysts, however studies about degradation efficiency of dye using different phases of TiO2 is scared. Employing photocatalysis, the novelty of this study is to compare methyl orange (MO) degradation efficiency of pure phases of photocatalysts TiO2 (anatase, rutile and brookite) in terms of their photochemical properties and underlying photocatalytic mechanism. Characterisation evaluations including scanning electro
APA, Harvard, Vancouver, ISO, and other styles
19

Teye, Godfred Kwesi, Jingyu Huang, Yi Li, Ke Li, Lei Chen, and Williams Kweku Darkwah. "Photocatalytic Degradation of Sulfamethoxazole, Nitenpyram and Tetracycline by Composites of Core Shell g-C3N4@ZnO, and ZnO Defects in Aqueous Phase." Nanomaterials 11, no. 10 (2021): 2609. http://dx.doi.org/10.3390/nano11102609.

Full text
Abstract:
The synthesis of photocatalysts with high charge separation and transfer efficiency are of immense significance in the process of using photocatalysis technology for wastewater treatment. In this study core shell g-C3N4@ZnO, and ZnO defects photocatalysts presented an improved morphology in its characterization using techniques such as SEM, DRS, PL, MS, EIS, and XRD, and enhanced photodegradation of sulfamethoxazole, Nitenpyram and Tetracycline. Different composites were obtained as confirmed by the various characterization techniques studied, including core shell g-C3N4@ZnO, and ZnO defects p
APA, Harvard, Vancouver, ISO, and other styles
20

Ngwenya, Phephile, Lehlogonolo S. Tabana, Shepherd M. Tichapondwa, and Evans M. N. Chirwa. "Occurrence, Ecotoxicity, and Photocatalytic Remediation of Antiretroviral Drugs in Global Surface Water Matrices." Catalysts 15, no. 4 (2025): 381. https://doi.org/10.3390/catal15040381.

Full text
Abstract:
The increasing presence of pharmaceuticals, particularly antiretroviral drugs (ARVs), in wastewater has raised concerns regarding their environmental and health impacts. Photocatalysis, driven by advanced photocatalysts, such as coloured TiO2, ZnO, and composites with carbon-based materials, has shown promise as an effective method for degrading these pollutants. Despite significant laboratory-scale success, challenges remain in scaling this technology for real-world applications, particularly in terms of photocatalyst stability, the formation of toxic degradation by-products, and economic fea
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Jiaxin, Zhi Chen, Jianfei Fang, et al. "Facile synthesis of TiO2 film on glass for the photocatalytic removal of rhodamine B and tetracycline hydrochloride." Materials Express 9, no. 5 (2019): 437–43. http://dx.doi.org/10.1166/mex.2019.1522.

Full text
Abstract:
Photocatalysis is one of the efficient approaches for pollution control in water. However, the traditional photocatalysts used for the removal of organic pollutants are in powder form, which makes it difficult to recover them from the suspended reaction system. On the contrary, thin film photocatalyst is easy to be retrieved and possesses unique feature for practical application. In present work, stable TiO2 sol suspension was prepared and amorphous TiO2 thin film was then immobilized upon glass substrate through facile spin coating method. The thickness of film could be simply controlled by c
APA, Harvard, Vancouver, ISO, and other styles
22

Gao, Lan, Elyes Nefzaoui, Frédéric Marty, et al. "TiO2-Coated ZnO Nanowire Arrays: A Photocatalyst with Enhanced Chemical Corrosion Resistance." Catalysts 11, no. 11 (2021): 1289. http://dx.doi.org/10.3390/catal11111289.

Full text
Abstract:
Photocatalysis is proven to be the most efficient and environmentally friendly method for the degradation of organic pollutants in water purification. To meet the requirement of large-scale water treatment, there are two important points: One is the lifetime and chemical stability of the photocatalyst material, especially in the complex and harsh aqueous conditions. The other is the ease of synthesis of such photocatalysts with specific nano-morphology. In this work, two common photocatalyst materials, zinc oxide (ZnO) and titanium dioxide (TiO2), are selected to form more sustainable photocat
APA, Harvard, Vancouver, ISO, and other styles
23

Chang, Haoxu, Yayang Wang, Panzhe Qiao, Bo Sun, Zhengbang Wang та Fei Song. "Formulating InVO4/α-Fe2O3 Heterojunction Composites for Photocatalytic Tetracycline Hydrochloride Degradation". Nanomaterials 14, № 17 (2024): 1441. http://dx.doi.org/10.3390/nano14171441.

Full text
Abstract:
This study reports the synthesis of InVO4/α-Fe2O3 heterojunction photocatalysts with different stoichiometric ratios via a two-step hydrothermal synthesis reaction. The prepared photocatalysts were characterized by XRD, SEM, TEM, XPS, and other methods. The prepared composites exhibited good photocatalysis of tetracycline hydrochloride. Among the InVO4/α-Fe2O3 heterojunction photocatalysts with different ratios, the InVO4/0.25α-Fe2O3 photocatalyst showed the highest degradation rate for 20 mg L−1 tetracycline hydrochloride. After three photocatalytic runs, it still exhibited excellent stabilit
APA, Harvard, Vancouver, ISO, and other styles
24

Singh, Gurpinder, Manpreet Kaur Ubhi, Kiran Jeet, Chetan Singla, and Manpreet Kaur. "A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites." Processes 11, no. 6 (2023): 1727. http://dx.doi.org/10.3390/pr11061727.

Full text
Abstract:
Traditional wastewater treatment methods, such as reverse osmosis, adsorption, desalination, and others, are outweighed by the photocatalytic degradation of organic pollutants. Ferrites are prominent photocatalysts due to their tunable band gaps, surface areas, and magnetic properties, which render photodegradation economical. Ferrites and their nanocomposites have been reported as promising visible light active photocatalysts. The photocatalytic system is heavily reliant on a number of factors that influence the photodegradation of organic effluents. This review demonstrates various parameter
APA, Harvard, Vancouver, ISO, and other styles
25

Alalm, Mohamed Gar, Ridha Djellabi, Daniela Meroni, Carlo Pirola, Claudia Letizia Bianchi, and Daria Camilla Boffito. "Toward Scaling-Up Photocatalytic Process for Multiphase Environmental Applications." Catalysts 11, no. 5 (2021): 562. http://dx.doi.org/10.3390/catal11050562.

Full text
Abstract:
Recently, we have witnessed a booming development of composites and multi-dopant metal oxides to be employed as novel photocatalysts. Yet the practical application of photocatalysis for environmental purposes is still elusive. Concerns about the unknown fate and toxicity of nanoparticles, unsatisfactory performance in real conditions, mass transfer limitations and durability issues have so far discouraged investments in full-scale applications of photocatalysis. Herein, we provide a critical overview of the main challenges that are limiting large-scale application of photocatalysis in air and
APA, Harvard, Vancouver, ISO, and other styles
26

Gu, Zhanyong, Mengdie Jin, Xin Wang, et al. "Recent Advances in g-C3N4-Based Photocatalysts for NOx Removal." Catalysts 13, no. 1 (2023): 192. http://dx.doi.org/10.3390/catal13010192.

Full text
Abstract:
Nitrogen oxides (NOx) pollutants can cause a series of environmental issues, such as acid rain, ground-level ozone pollution, photochemical smog and global warming. Photocatalysis is supposed to be a promising technology to solve NOx pollution. Graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst has attracted much attention since 2009. However, the pristine g-C3N4 suffers from poor response to visible light, rapid charge carrier recombination, small specific surface areas and few active sites, which results in deficient solar light efficiency and unsatisfactory photocatalytic perfo
APA, Harvard, Vancouver, ISO, and other styles
27

Park, Hyunwoong. "(Invited) A Wired Photosynthesis of Formate from Aqueous CO2 Using Earth Abundant Catalysts." ECS Meeting Abstracts MA2018-01, no. 31 (2018): 1834. http://dx.doi.org/10.1149/ma2018-01/31/1834.

Full text
Abstract:
Harnessing and utilizing sunlight at high efficiency have represented an enormous challenge to the achievement of a carbon neutral society over the past four decades. Photocatalysis uniquely mimics natural photosynthesis in terms of light absorption and conversion, as well as storage of the absorbed photon energy into chemical bond energy. Despite this similarity, the development of low cost photocatalysts capable of selectively producing liquid chemicals from CO2 and water with efficiency and durability comparable to those in typical photosynthesis remains a great challenge. Most of the photo
APA, Harvard, Vancouver, ISO, and other styles
28

Park, Hyunwoong. "(Invited) Unassisted Conversion of Carbon Dioxide and Water into Aliphatic Acids Using Copper and Iron Oxide Photocatalyst Film at Solar-to-Chemical Conversion Efficiency of ~5%." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 3976. https://doi.org/10.1149/ma2024-02593976mtgabs.

Full text
Abstract:
Harnessing and utilizing sunlight at high efficiency have represented an enormous challenge to the achievement of a carbon neutral society over the past four decades. Photocatalysis uniquely mimics natural photosynthesis in terms of light absorption and conversion, as well as storage of the absorbed photon energy into chemical bond energy. Despite this similarity, the development of low cost photocatalysts capable of selectively producing liquid chemicals from CO2 and water with efficiency and durability comparable to those in typical photosynthesis remains a great challenge. Most of the photo
APA, Harvard, Vancouver, ISO, and other styles
29

Hu, Xuefeng, Ting Luo, Yuhan Lin, and Mina Yang. "Construction of Novel Z-Scheme g-C3N4/AgBr-Ag Composite for Efficient Photocatalytic Degradation of Organic Pollutants under Visible Light." Catalysts 12, no. 11 (2022): 1309. http://dx.doi.org/10.3390/catal12111309.

Full text
Abstract:
As a green and sustainable technology to relieve environmental pollution issues, semiconductor photocatalysis attracted great attention. However, most single-component semiconductors suffer from high carrier recombination rate and low reaction efficiency. Here, we constructed a novel visible-light-driven Z-scheme g-C3N4/AgBr-Ag photocatalyst (noted as CN-AA-0.05) using a hydrothermal method with KBr as the bromine source. The CN-AA-0.05 photocatalyst shows an excellent photocatalytic degradation performance, and a rhodamine B (RhB) degradation ratio of 96.3% in 40 min, and 2-mercaptobenzothiaz
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Ling. "Photocatalyst and Decoration Design in Indoor Public Spaces Based on the Photocatalytic Function of Nanometer Titanium Dioxide." Advances in Materials Science and Engineering 2022 (August 10, 2022): 1–10. http://dx.doi.org/10.1155/2022/1937481.

Full text
Abstract:
The process of decorating interior spaces often produces substances that are harmful to the human body, which seriously spoils the decorating experience. Photocatalyst is the oxidant of nanometer titanium dioxide. It cannot be oxidized by itself. This article aims to discuss photocatalysts and interior and exterior design. When there is light in the room, the photocatalyst will fully integrate with the light, which has a strong catalytic and degrading effect. This can degrade indoor formaldehyde and other pollutants while also having a sterilization effect. The principle of the photocatalyst i
APA, Harvard, Vancouver, ISO, and other styles
31

Singh, Seema, Aniket Chaki, Devesh Pratap Chand, Avinash Raghuwanshi, Pramod Kumar Singh, and Hari Mahalingham. "A novel polystyrene-supported titanium dioxide photocatalyst for degradation of methyl orange and methylene blue dyes under UV irradiation." Journal of Chemical Engineering 28, no. 1 (2014): 9–13. http://dx.doi.org/10.3329/jce.v28i1.18103.

Full text
Abstract:
The commercialization of titanium dioxide-based heterogeneous photocatalysis continues to suffer from various limitations, the major shortcoming being the costly and time consuming post-treatment separation of very fine titanium dioxide particles. In order to eliminate this major hindrance, immobilization of titanium dioxide particles on various substrates continues to be an active area of research. In this work, polystyrene-supported titanium dioxide photocatalyst was prepared using a facile method. The photocatalytic activity of the developed photocatalysts was investigated by photodegradati
APA, Harvard, Vancouver, ISO, and other styles
32

Fadlun, Wan. "Carbon Dioxide Reduction to Solar Fuels via Iron-Based Nanocomposite: Strategies to Intensify the Photoactivity." Journal of Computational and Theoretical Nanoscience 17, no. 2 (2020): 654–62. http://dx.doi.org/10.1166/jctn.2020.8789.

Full text
Abstract:
Photocatalysis has been studied over three decades ago as a promising alternative for carbon dioxide (CO2) reduction with the ultimate objective of promoting sustainable keys to address global warming and energy crisis. In particular, photocatalysis offers the reduction of CO2 to renewable hydrocarbon fuels by utilizing limitless sunlight to trigger the reaction. The urgency reducing CO2 to solar fuels have aroused attention towards Fe-based material owing to their abundance, flexible compositional tunability, recyclability, and low cost compared to noble-metal photocatalysts. This review disc
APA, Harvard, Vancouver, ISO, and other styles
33

Shanmugaratnam, Sivagowri, Elilan Yogenthiran, Ranjit Koodali, Punniamoorthy Ravirajan, Dhayalan Velauthapillai, and Yohi Shivatharsiny. "Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production." Energies 14, no. 24 (2021): 8265. http://dx.doi.org/10.3390/en14248265.

Full text
Abstract:
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis, photovoltaic, and energy storage due to their quantum confinement effect, optoelectronic behavior, and their stability. In particular, TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein, the methods used for the f
APA, Harvard, Vancouver, ISO, and other styles
34

Goodarzi, Nahal, Zahra Ashrafi-Peyman, Elahe Khani, and Alireza Z. Moshfegh. "Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation." Catalysts 13, no. 7 (2023): 1102. http://dx.doi.org/10.3390/catal13071102.

Full text
Abstract:
Semiconductor-based photocatalytic reactions are a practical class of advanced oxidation processes (AOPs) to address energy scarcity and environmental pollution. By utilizing solar energy as a clean, abundant, and renewable source, this process offers numerous advantages, including high efficiency, eco-friendliness, and low cost. In this review, we present several methods to construct various photocatalyst systems with excellent visible light absorption and efficient charge carrier separation ability through the optimization of materials design and reaction conditions. Then it introduces the f
APA, Harvard, Vancouver, ISO, and other styles
35

Abed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (2020): 2260. http://dx.doi.org/10.3390/nano10112260.

Full text
Abstract:
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron–hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties
APA, Harvard, Vancouver, ISO, and other styles
36

Ren, Yu, Yuze Dong, Yaqing Feng, and Jialiang Xu. "Compositing Two-Dimensional Materials with TiO2 for Photocatalysis." Catalysts 8, no. 12 (2018): 590. http://dx.doi.org/10.3390/catal8120590.

Full text
Abstract:
Energy shortage and environmental pollution problems boost in recent years. Photocatalytic technology is one of the most effective ways to produce clean energy—hydrogen and degrade pollutants under moderate conditions and thus attracts considerable attentions. TiO2 is considered one of the best photocatalysts because of its well-behaved photo-corrosion resistance and catalytic activity. However, the traditional TiO2 photocatalyst suffers from limitations of ineffective use of sunlight and rapid carrier recombination rate, which severely suppress its applications in photocatalysis. Surface modi
APA, Harvard, Vancouver, ISO, and other styles
37

Kudo, Akihiko. "Photocatalysis and solar hydrogen production." Pure and Applied Chemistry 79, no. 11 (2007): 1917–27. http://dx.doi.org/10.1351/pac200779111917.

Full text
Abstract:
Photocatalytic water splitting is a challenging reaction because it is an ultimate solution to energy and environmental issues. Recently, many new powdered photocatalysts for water splitting have been developed. For example, a NiO (0.2 wt %)/NaTaO3:La (2 %) photocatalyst with a 4.1-eV band gap showed high activity for water splitting into H2 and O2 with an apparent quantum yield of 56 % at 270 nm. Overall water splitting under visible light irradiation has been achieved by construction of a Z-scheme photocatalysis system employing visible-light-driven photocatalysts, Ru/SrTiO3:Rh and BiVO4 for
APA, Harvard, Vancouver, ISO, and other styles
38

Tapia-Tlatelpa, Tecilli, Jose Trull, and Luis Romeral. "In situ Decolorization Monitoring of Textile Dyes for an Optimized UV-LED/TiO2 Reactor." Catalysts 9, no. 8 (2019): 669. http://dx.doi.org/10.3390/catal9080669.

Full text
Abstract:
Heterogeneous photocatalysis, using photocatalysts in suspension to eliminate diverse contaminants, including textile wastewater, has several advantages. Nevertheless, current absorbance and decolorization measurements imply sample acquisition by extraction at a fixed rate with consequent photocatalyst removal. This study presents online monitoring for the decolorization of six azo dyes, Orange PX-2R (OP2), Remazol Black B133 (RB), Procion Crimson H-EXL (PC), Procion Navy H-EXL (PN), Procion Blue H-EXL (PB), and Procion Yellow H-EXL (PY), analyzing the spectrum measured in situ by using the li
APA, Harvard, Vancouver, ISO, and other styles
39

He, Yan, Zewei Yuan, Kai Cheng, Zhenyun Duan, and Wenzhen Zhao. "Development of electrical enhanced photocatalysis polishing slurry for silicon carbide wafer." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234, no. 3 (2019): 401–13. http://dx.doi.org/10.1177/1350650119864243.

Full text
Abstract:
Single-crystal silicon carbide, as one of the most promising next-generation semiconductor materials, should be polished with atomically smooth and damage-free surface to meet the requirements of semiconductor applications. The research presented in this paper aims to develop an electrical enhanced photocatalysis polishing method for atomic smoothing of Si-face (0001) 4H-SiC wafer based on the powerful oxidability of UV photo-excited hydroxyl radical on nano semiconductor particles. The research identifies the influences of photocatalyst, electron capturer, UV light, voltage and pH value by de
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Zhuoying, Sameera Wickramasinghe, Yu Hsin Tsai, Anna Cristina S. Samia, David Gurarie, and Xiong Yu. "Modeling and Experimental Studies on Adsorption and Photocatalytic Performance of Nitrogen-Doped TiO2 Prepared via the Sol–Gel Method." Catalysts 10, no. 12 (2020): 1449. http://dx.doi.org/10.3390/catal10121449.

Full text
Abstract:
Nitrogen-doped TiO2 has a great potential as a photocatalyst under visible light irradiation with applications in the removal of air and water pollutants, and the treatment of bacterial contaminations. In this study, nitrogen-doped TiO2 nanoparticles were synthesized via the sol–gel method and a post-annealing heat treatment approach. The effects of annealing treatment on the photocatalyst crystalline size and degree of crystallinity were analyzed. Methylene blue dye was used as the model water contaminant for the evaluation of the photoactivity of the synthesized nitrogen-doped TiO2 nanoparti
APA, Harvard, Vancouver, ISO, and other styles
41

Wongburapachart, Chanagun, Phuwadej Pornaroontham, Kyusung Kim, and Pramoch Rangsunvigit. "Photocatalytic Degradation of Acid Orange 7 by NiO-TiO2/TiO2 Bilayer Film Photo-Chargeable Catalysts." Coatings 13, no. 1 (2023): 141. http://dx.doi.org/10.3390/coatings13010141.

Full text
Abstract:
Photocatalysis as an eco-friendly technology has the potential to achieve the Sustainable Development Goals (SDGs). However, an improvement of conventional photocatalysts is necessary to overcome their limitations such as slow kinetics, wavelength for excitation, and environmental restrictions. In particular, the development of a photocatalyst that can operate even in the absence of light is constantly conducted, and a photo-chargeable photocatalyst could be one of the answers. In this paper, a heterojunction composed of TiO2 and NiO-TiO2 bilayer film photocatalyst (BLF) was prepared. The effe
APA, Harvard, Vancouver, ISO, and other styles
42

Isopencu, Gabriela Olimpia, Alexandra Mocanu, and Iuliana-Mihaela Deleanu. "A Brief Review of Photocatalytic Reactors Used for Persistent Pesticides Degradation." ChemEngineering 6, no. 6 (2022): 89. http://dx.doi.org/10.3390/chemengineering6060089.

Full text
Abstract:
Pesticide pollution is a major issue, given their intensive use in the 20th century, which led to their accumulation in the environment. At the international level, strict regulations are imposed on the use of pesticides, simultaneously with the increasing interest of researchers from all over the world to find methods of neutralizing them. Photocatalytic degradation is an intensively studied method to be applied for the degradation of pesticides, especially through the use of solar energy. The mechanisms of photocatalysis are studied and implemented in pilot and semi-pilot installations on ex
APA, Harvard, Vancouver, ISO, and other styles
43

Luan, Jingfei, Wenlu Liu, Ye Yao, et al. "Synthesis and Property Examination of Er2FeSbO7/BiTiSbO6 Heterojunction Composite Catalyst and Light-Catalyzed Retrogradation of Enrofloxacin in Pharmaceutical Waste Water under Visible Light Irradiation." Materials 15, no. 17 (2022): 5906. http://dx.doi.org/10.3390/ma15175906.

Full text
Abstract:
A new photocatalyst, Er2FeSbO7, was prepared by solid phase sintering using the high-temperature synthesis method for the first time in this paper. Er2FeSbO7/BiTiSbO6 heterojunction (EBH) catalyst was prepared by the solvent thermal method for the first time. Er2FeSbO7 compound crystallized in the pyrochlore-type architecture and cubelike crystal system; the interspace group of Er2FeSbO7 was Fd3m and the crystal cellular parameter a of Er2FeSbO7 was 10.179902 Å. The band gap (BDG) width of Er2FeSbO7 was 1.88 eV. After visible light irradiation of 150 minutes (VLGI-150min) with EBH as a photoca
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Wanting, Yuanting Wu, Long Chen, Chenggang Xu, Changqing Liu, and Chengxin Li. "Fabrication of Z-Type TiN@(A,R)TiO2 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity." Nanomaterials 13, no. 13 (2023): 1984. http://dx.doi.org/10.3390/nano13131984.

Full text
Abstract:
Plasmonic effect-enhanced Z-type heterojunction photocatalysts comprise a promising solution to the two fundamental problems of current TiO2-based photocatalysis concerning low-charge carrier separation efficiency and low utilization of solar illumination. A plasmonic effect-enhanced TiN@anatase-TiO2/rutile-TiO2 Z-type heterojunction photocatalyst with the strong interface of the N–O chemical bond was synthesized by hydrothermal oxidation of TiN. The prepared photocatalyst shows desirable visible light absorption and good visible-light-photocatalytic activity. The enhancement in photocatalytic
APA, Harvard, Vancouver, ISO, and other styles
45

Zelekew, Osman Ahmed, and Yi-nan Wu. "Metal Doped-MoS2/g-C3N4 Nanocomposites for Antibiotics Degradation with Photo-Fenton Reaction Process: Defect Engineering, Synergistic Effects, and Degradation Mechanisms." ECS Meeting Abstracts MA2024-01, no. 13 (2024): 1072. http://dx.doi.org/10.1149/ma2024-01131072mtgabs.

Full text
Abstract:
Currently, the energy crisis and environmental pollutions due to the growth of industrialization and urbanization become gradually a prominent and serious issue. Due to these reasons, we aimed to design photoactive metal-doped MoS2/g-C3N4 nanocomposites photocatalysts for the degradation of antibiotics. The degradation of organic pollutants with photocatalysis is considered as green, ecofriendly, economical, and promising methods. Herein, ultrathin g-C3N4 was prepared with simple method and combined with metal-doped MoS2 (Mg-doped MoS2) with varying the amounts of dopants. The prepared photoca
APA, Harvard, Vancouver, ISO, and other styles
46

Pei, Junxiang, Haofeng Li, Songlin Zhuang, Dawei Zhang, and Dechao Yu. "Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods." Catalysts 13, no. 11 (2023): 1402. http://dx.doi.org/10.3390/catal13111402.

Full text
Abstract:
Graphitized carbon nitride (g-C3N4), as a metal-free, visible-light-responsive photocatalyst, has a very broad application prospect in the fields of solar energy conversion and environmental remediation. The g-C3N4 photocatalyst owns a series of conspicuous characteristics, such as very suitable band structure, strong physicochemical stability, abundant reserves, low cost, etc. Research on the g-C3N4 or g-C3N4-based photocatalysts for real applications has become a competitive hot topic and a frontier area with thousands of publications over the past 17 years. In this paper, we carefully revie
APA, Harvard, Vancouver, ISO, and other styles
47

Mohd Yusop, Nurida, Oh Pei Ching, Suriati Sufian, and Masniroszaime M. Zain. "Enhanced Effect of Metal Sulfide Doping (MgS-TiO2) Nanostructure Catalyst on Photocatalytic Reduction of CO2 to Methanol." Sustainability 15, no. 13 (2023): 10415. http://dx.doi.org/10.3390/su151310415.

Full text
Abstract:
The conversion of CO2 gas from the global emission to methanol can be a route to look at in addressing greenhouse gas (GHG) issues. Photocatalysis has been attracting attention in the conversion of CO2 to methanol, as it is seen to be one of the most viable, economic, and sustainable strategies. The biggest hindrance to the use of metal oxide photocatalysts was the poisoning by sulfur content in the CO2 gas feedstock. Therefore, in the development of photocatalysts using metal oxide-based additives, the metal needs to be in the form of metal sulfides to avoid catalyst poisoning due to the pres
APA, Harvard, Vancouver, ISO, and other styles
48

Yu, Haidong, Haibing Jiang, Shuji Zhang, Xin Feng, Song Yin, and Wenzhi Zhao. "Review of Two-Dimensional MXenes (Ti3C2Tx) Materials in Photocatalytic Applications." Processes 11, no. 5 (2023): 1413. http://dx.doi.org/10.3390/pr11051413.

Full text
Abstract:
MXenes (Ti3C2Tx) have gotten a lot of interest since their discovery in 2011 because of their distinctive two-dimensional layered structure, high conductivity, and rich surface functional groups. According to the findings, MXenes (Ti3C2Tx) may block photogenerated electron-hole recombination in the photocatalytic system and offer many activation reaction sites, enhancing the photocatalytic performance and demonstrating tremendous promise in the field of photocatalysis. This review discusses current Ti3C2Tx-based photocatalyst preparation techniques, such as ultrasonic mixing, electrostatic sel
APA, Harvard, Vancouver, ISO, and other styles
49

Feliczak-Guzik, Agnieszka. "Nanomaterials as Photocatalysts—Synthesis and Their Potential Applications." Materials 16, no. 1 (2022): 193. http://dx.doi.org/10.3390/ma16010193.

Full text
Abstract:
Increasing demand for energy and environmental degradation are the most serious problems facing the man. An interesting issue that can contribute to solving these problems is the use of photocatalysis. According to literature, solar energy in the presence of a photocatalyst can effectively (i) be converted into electricity/fuel, (ii) break down chemical and microbial pollutants, and (iii) help water purification. Therefore, the search for new, efficient, and stable photocatalysts with high application potential is a point of great interest. The photocatalysts must be characterized by the abili
APA, Harvard, Vancouver, ISO, and other styles
50

Cheng, Yan, Chenxi Li, Shindume Lomboleni Hamukwaya, Guangdong Huang, and Zengying Zhao. "Synthesis of Composite Titanate Photocatalyst via Molten Salt Processing and Its Enhanced Photocatalytic Properties." Nanomaterials 13, no. 22 (2023): 2944. http://dx.doi.org/10.3390/nano13222944.

Full text
Abstract:
Photocatalysis plays a pivotal role in environmental remediation and energy production and improving the efficiency of photocatalysts, yet enhancing its efficiency remains a challenge. Titanate has been claimed to be a very promising material amongst various photocatalysts in recent years. In this work, a novel composite photocatalyst of sodium titanate and potassium titanate was synthesized via a simple hydrothermal and molten salt calcination method. Low melting point nitrate was added in the calcination process, which helps reduce the calcination temperature. The as-prepared composite sampl
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!