Journal articles on the topic 'Photocurrent switching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photocurrent switching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lewandowska, Kornelia, and Konrad Szaciłowski. "Molecular Photodiode and Two-channel Optoelectronic Demultiplexer based on the [60]Fullerene-porphyrin Tetrad." Australian Journal of Chemistry 64, no. 10 (2011): 1409. http://dx.doi.org/10.1071/ch11051.
Full textWang, Hua, and Xiaofeng Qian. "Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials." Science Advances 5, no. 8 (2019): eaav9743. http://dx.doi.org/10.1126/sciadv.aav9743.
Full textSheng, Yunwei, Ignasi Fina, Marin Gospodinov, and Josep Fontcuberta. "Bulk photovoltaic effect modulated by ferroelectric polarization back-switching." Applied Physics Letters 120, no. 24 (2022): 242901. http://dx.doi.org/10.1063/5.0094837.
Full textAniskevich, Y., M. Malashchonak, A. Antanovich, A. Prudnikau, G. Ragoisha, and E. Streltsov. "Photocurrent Switching on Electrophoretic CdSe QD Electrodes with Different Ligands." International Journal of Nanoscience 18, no. 03n04 (2019): 1940053. http://dx.doi.org/10.1142/s0219581x19400532.
Full textKIMURA, Shunsaku. "Switching Photocurrent Direction with Peptide-Modified Electrode." Kobunshi 54, no. 8 (2005): 570. http://dx.doi.org/10.1295/kobunshi.54.570.
Full textZhou, Min, Ying Ying, Hui Huang, Yueming Tan, Wenfang Deng, and Qingji Xie. "Photoelectrochemical immunoassay of interleukin-6 based on covalent reaction-triggered photocurrent polarity switching of ZnO@fullerenol." Chemical Communications 57, no. 83 (2021): 10903–6. http://dx.doi.org/10.1039/d1cc04820a.
Full textYang, Ruiying, Kang Zou, Xiaohua Zhang, Cuicui Du, and Jinhua Chen. "Target-induced photocurrent-polarity switching: a highly selective and sensitive photoelectrochemical sensing platform." Chemical Communications 55, no. 61 (2019): 8939–42. http://dx.doi.org/10.1039/c9cc03973b.
Full textPodborska, Agnieszka, and Konrad Szaciłowski. "Towards 'Computer-on-a-Particle' Devices: Optoelectronic 1:2 Demultiplexer Based on Nanostructured Cadmium Sulfide." Australian Journal of Chemistry 63, no. 2 (2010): 165. http://dx.doi.org/10.1071/ch09440.
Full textWarzecha, M., M. Oszajca, K. Pilarczyk, and K. Szaciłowski. "A three-valued photoelectrochemical logic device realising accept anything and consensus operations." Chemical Communications 51, no. 17 (2015): 3559–61. http://dx.doi.org/10.1039/c4cc09980j.
Full textZhang, Bo, Yaqian Liu, Zhen Chen, and Xiaofang Wang. "Deformation-Tailored MoS2 Optoelectronics: Fold-Induced Band Reconstruction for Programmable Polarity Switching." Nanomaterials 15, no. 10 (2025): 727. https://doi.org/10.3390/nano15100727.
Full textRyzhkov, Nikolay V., Veronika Yu Yurova, Sviatlana A. Ulasevich, and Ekaterina V. Skorb. "Photoelectrochemical photocurrent switching effect on a pristine anodized Ti/TiO2 system as a platform for chemical logic devices." RSC Advances 10, no. 21 (2020): 12355–59. http://dx.doi.org/10.1039/d0ra00205d.
Full textYin, Hong-Ju, and Ke-Zhi Wang. "Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide." Molecules 29, no. 3 (2024): 734. http://dx.doi.org/10.3390/molecules29030734.
Full textMeng, Leixia, Yanmei Li, Ruiying Yang, Xiaohua Zhang, Cuicui Du, and Jinhua Chen. "A sensitive photoelectrochemical assay of miRNA-155 based on a CdSe QDs//NPC-ZnO polyhedra photocurrent-direction switching system and target-triggered strand displacement amplification strategy." Chemical Communications 55, no. 15 (2019): 2182–85. http://dx.doi.org/10.1039/c8cc09411j.
Full textAntuch, Manuel, Pierre Millet, Akihide Iwase, and Akihiko Kudo. "The role of surface states during photocurrent switching: Intensity modulated photocurrent spectroscopy analysis of BiVO4 photoelectrodes." Applied Catalysis B: Environmental 237 (December 2018): 401–8. http://dx.doi.org/10.1016/j.apcatb.2018.05.011.
Full textOszajca, Marek F., Keri L. McCall, Neil Robertson, and Konrad Szaciłowski. "Photocurrent Switching Effects in TiO2 Modified with Ruthenium Polypyridine Complexes." Journal of Physical Chemistry C 115, no. 24 (2011): 12187–95. http://dx.doi.org/10.1021/jp201805t.
Full textShan, Bing, Animesh Nayak, Olivia F. Williams, et al. "Excitation energy-dependent photocurrent switching in a single-molecule photodiode." Proceedings of the National Academy of Sciences 116, no. 33 (2019): 16198–203. http://dx.doi.org/10.1073/pnas.1907118116.
Full textWang, Xiuhua, Mingwang Shao, Guang Shao, Yan Fu, and Shaowu Wang. "Reversible and efficient photocurrent switching of ultra-long polypyrrole nanowires." Synthetic Metals 159, no. 3-4 (2009): 273–76. http://dx.doi.org/10.1016/j.synthmet.2008.09.019.
Full textLee, Jin Hee, Hamza Zad Gul, Hyun Kim, et al. "Photocurrent Switching of Monolayer MoS2 Using a Metal–Insulator Transition." Nano Letters 17, no. 2 (2017): 673–78. http://dx.doi.org/10.1021/acs.nanolett.6b03689.
Full textXue, Ya, Hai Ping He, and Zhi Zhen Ye. "p-Type Field Effect Transistor and UV-Photoconductive Characteristics of Na Doped ZnMgO Thin Films." Advanced Materials Research 668 (March 2013): 681–85. http://dx.doi.org/10.4028/www.scientific.net/amr.668.681.
Full textGao, Rong Li, Chun Lin Fu, Wei Cai, et al. "Enhancement of Oxygen Vacancies Induced Photovoltaic Effects in Bi0.9La0.1FeO3 Thin Films." Materials Science Forum 815 (March 2015): 176–82. http://dx.doi.org/10.4028/www.scientific.net/msf.815.176.
Full textYang, Ruiying, and Jie Liu. "Sensitive and selective photoelectrochemical immunosensing platform based on potential-induced photocurrent-direction switching strategy and a direct Z-scheme CdS//hemin photocurrent-direction switching system." Journal of Electroanalytical Chemistry 873 (September 2020): 114346. http://dx.doi.org/10.1016/j.jelechem.2020.114346.
Full textMa, Xingfa, Caiwei Li, Xintao Zhang, Mingjun Gao, You Wang, and Guang Li. "Interface Optimisation of the Fe2O3/C3N4 Heterojunction with Metal Nanoparticles and Their Negative and Positive Photoelectric Responses in a Broadband Light Spectrum Range." Coatings 14, no. 12 (2024): 1595. https://doi.org/10.3390/coatings14121595.
Full textYan, Sen Lin. "Control of a Chaotic Semiconductor Laser via Modulating Photocurrent." Applied Mechanics and Materials 336-338 (July 2013): 1271–74. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.1271.
Full textHu, Taozheng, Jingyu Wu, Diyi Han, et al. "Dual plasmonic nanostructures for switching polarity of hot electron-induced photocurrent." Nanoscale 12, no. 27 (2020): 14668–75. http://dx.doi.org/10.1039/c9nr10413e.
Full textSzaciłowski, Konrad, and Wojciech Macyk. "Photoelectrochemical Photocurrent Switching Effect: A New Platform for Molecular Logic Devices." CHIMIA International Journal for Chemistry 61, no. 12 (2007): 831–34. http://dx.doi.org/10.2533/chimia.2007.831.
Full textGawȩda, Sylwia, Graẑyna Stochel, and Konrad Szaciłowski. "Photosensitization and Photocurrent Switching in Carminic Acid/Titanium Dioxide Hybrid Material." Journal of Physical Chemistry C 112, no. 48 (2008): 19131–41. http://dx.doi.org/10.1021/jp804700d.
Full textPetrov, E. G., V. O. Leonov, and V. Snitsarev. "Transient photocurrent in molecular junctions: Singlet switching on and triplet blocking." Journal of Chemical Physics 138, no. 18 (2013): 184709. http://dx.doi.org/10.1063/1.4803697.
Full textPark, Y. A., K. D. Sung, C. J. Won, J. H. Jung та N. Hur. "Bipolar resistance switching and photocurrent in a BaTiO3-δ thin film". Journal of Applied Physics 114, № 9 (2013): 094101. http://dx.doi.org/10.1063/1.4819800.
Full textBansal, Himanshu, Gur Pyari, and Sukhdev Roy. "Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study." Journal of Neural Engineering 19, no. 2 (2022): 026032. http://dx.doi.org/10.1088/1741-2552/ac6061.
Full textSun, Bin, Yun Ze Long, Meng Meng Li, et al. "Synthesis, Structural and Photoelectrical Properties of Self-Assembled Gold-Poly(3,4-Ethylenedioxythiophene) Nanowires and Nanocables." Advanced Materials Research 650 (January 2013): 200–205. http://dx.doi.org/10.4028/www.scientific.net/amr.650.200.
Full textStrel'chuk, Anatoly M., Baptiste Berenguier, Eugene B. Yakimov, and Laurent Ottaviani. "Recombination Processes in 4H-SiC pn Structures." Materials Science Forum 858 (May 2016): 345–48. http://dx.doi.org/10.4028/www.scientific.net/msf.858.345.
Full textSabeth, Farzana, Rahima Khaton, Md Serajul Islam, Toshifumi Iimori, and Nobuhiro Ohta. "Reversible Photocurrent Switching in Ionic and Superionic Conductors of Polycrystalline Silver Iodide." Journal of Physical Chemistry C 122, no. 47 (2018): 26790–96. http://dx.doi.org/10.1021/acs.jpcc.8b06331.
Full textMalashchonak, М. V., E. A. Streltsov, A. V. Mazanik, et al. "Size-dependent photocurrent switching in chemical bath deposited CdSe quantum dot films." Journal of Solid State Electrochemistry 21, no. 3 (2016): 905–13. http://dx.doi.org/10.1007/s10008-016-3442-x.
Full textBeranek, Radim, and Horst Kisch. "A Hybrid Semiconductor Electrode for Wavelength-Controlled Switching of the Photocurrent Direction." Angewandte Chemie International Edition 47, no. 7 (2008): 1320–22. http://dx.doi.org/10.1002/anie.200701103.
Full textFong, Chee Yong, Sha Shiong Ng, NurFahana Mohd Amin, Fong Kwong Yam, and Zainuriah Hassan. "Sol-gel-derived gallium nitride thin films for ultraviolet photodetection." Microelectronics International 36, no. 1 (2019): 8–13. http://dx.doi.org/10.1108/mi-12-2017-0074.
Full textSizov, F. F., J. V. Gumenjuk-Sichevska, S. N. Danilov, and Z. F. Tsybrii. "Spin dependent polarization response in HgCdTe hot-electron bolometers." Semiconductor Physics, Quantum Electronics and Optoelectronics 25, no. 3 (2022): 254–61. http://dx.doi.org/10.15407/spqeo25.03.254.
Full textPaul, Subir, Niladri Hazra, Soumyajit Hazra, and Arindam Banerjee. "Carbon dot mediated trihybrid formation by reduction of GO and in situ gold nanocluster fabrication: photo-switching behaviour and degradation of chemical warfare agent stimulants." Journal of Materials Chemistry C 8, no. 44 (2020): 15735–41. http://dx.doi.org/10.1039/d0tc03554h.
Full textWei, Maocai, Meifeng Liu, Lun Yang, et al. "Electro–opto–mechano driven reversible multi-state memory devices based on photocurrent in Bi0.9Eu0.1FeO3/La0.67Sr0.33MnO3/PMN-PT heterostructures." RSC Advances 10, no. 27 (2020): 15784–93. http://dx.doi.org/10.1039/d0ra00725k.
Full textYasutomi, Shiro, Tomoyuki Morita, and Shunsaku Kimura. "pH-Controlled Switching of Photocurrent Direction by Self-Assembled Monolayer of Helical Peptides." Journal of the American Chemical Society 127, no. 42 (2005): 14564–65. http://dx.doi.org/10.1021/ja055624p.
Full textYang, Yiming, Xingyue Peng, and Dong Yu. "High intensity induced photocurrent polarity switching in lead sulfide nanowire field effect transistors." Nanotechnology 25, no. 19 (2014): 195202. http://dx.doi.org/10.1088/0957-4484/25/19/195202.
Full textChen, Da, and Jinghong Li. "Interfacial Functionalization of TiO2 with Smart Polymers: pH-Controlled Switching of Photocurrent Direction." Journal of Physical Chemistry C 114, no. 23 (2010): 10478–83. http://dx.doi.org/10.1021/jp100969a.
Full textMeng, T. T., L. X. Xue, H. Wang, K. Z. Wang, and M. Haga. "pH controllable photocurrent switching and molecular half-subtractor calculations based on a monolayer composite film of a dinuclear RuII complex and graphene oxide." Journal of Materials Chemistry C 5, no. 13 (2017): 3390–96. http://dx.doi.org/10.1039/c7tc00494j.
Full textZhu, K., G. Li, D. Johnstone, et al. "High Power Photoconductive Switch of 4H-SiC with Damage-Free Electrodes by Using n+-GaN Subcontact Layer." Materials Science Forum 527-529 (October 2006): 1387–90. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1387.
Full textLong, Xiao, Huan Tan, Florencio Sánchez, Ignasi Fina, and Josep Fontcuberta. "Disentangling electronic and thermal contributions to light-induced resistance switching in BaTiO3 ferroelectric tunnel junction." Journal of Applied Physics 132, no. 21 (2022): 214103. http://dx.doi.org/10.1063/5.0125040.
Full textIkuno, Takashi, and Masaki Hasegawa. "Wavelength-dependent switching of photocurrent polarity in a semiconductor film with bifacial band bendings." Applied Physics Express 9, no. 6 (2016): 062201. http://dx.doi.org/10.7567/apex.9.062201.
Full textPatel, Tarun, Junichi Okamoto, Tina Dekker, et al. "Photocurrent Imaging of Multi-Memristive Charge Density Wave Switching in Two-Dimensional 1T-TaS2." Nano Letters 20, no. 10 (2020): 7200–7206. http://dx.doi.org/10.1021/acs.nanolett.0c02537.
Full textGawęda, Sylwia, Remigiusz Kowalik, Przemysław Kwolek, et al. "Nanoscale Digital Devices Based on the Photoelectrochemical Photocurrent Switching Effect: Preparation, Properties and Applications." Israel Journal of Chemistry 51, no. 1 (2011): 36–55. http://dx.doi.org/10.1002/ijch.201000057.
Full textHino, Takami, Tsuyoshi Hasegawa, Hirofumi Tanaka, Tohru Tsuruoka, Takuji Ogawa, and Masakazu Aono. "Influence of Atmosphere on Photo-Assisted Atomic Switch Operations." Key Engineering Materials 596 (December 2013): 116–20. http://dx.doi.org/10.4028/www.scientific.net/kem.596.116.
Full textChen, Li, Yu Chen, Lili Miao, Yiming Gao, and Junwei Di. "Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor." Journal of Solid State Electrochemistry 24, no. 2 (2019): 411–20. http://dx.doi.org/10.1007/s10008-019-04469-1.
Full textLUO, BINGWEI, YUAN DENG, YAO WANG, YONGMING SHI, LILI CAO, and WEI ZHU. "INDEPENDENT GROWTH OF LARGE SCALE CdS NANOROD ARRAYS ON DIFFERENT INTERFACES WITH EFFICIENT PHOTOELECTRICAL PERFORMANCE." Functional Materials Letters 06, no. 01 (2013): 1350005. http://dx.doi.org/10.1142/s1793604713500057.
Full text