Academic literature on the topic 'Photodiodes avalanche ?? photon unique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photodiodes avalanche ?? photon unique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photodiodes avalanche ?? photon unique"
Prochazka, I., L. Kral, K. Hamal, and B. Sopko. "Photon counting timing uniformity–unique feature of the silicon avalanche photodiodes K14." Journal of Modern Optics 54, no. 2-3 (January 20, 2007): 141–49. http://dx.doi.org/10.1080/09500340600791814.
Full textMazzillo, M., G. Condorelli, A. Campisi, E. Sciacca, M. Belluso, S. Billotta, D. Sanfilippo, et al. "Single photon avalanche photodiodes arrays." Sensors and Actuators A: Physical 138, no. 2 (August 2007): 306–12. http://dx.doi.org/10.1016/j.sna.2007.05.016.
Full textHuang, Tao. "Photon emission characteristics of avalanche photodiodes." Optical Engineering 44, no. 7 (July 1, 2005): 074001. http://dx.doi.org/10.1117/1.1950087.
Full textSun, X., and F. M. Davidson. "Photon counting with silicon avalanche photodiodes." Journal of Lightwave Technology 10, no. 8 (1992): 1023–32. http://dx.doi.org/10.1109/50.156841.
Full textRobinson, D. L., and B. D. Metscher. "Photon detection with cooled avalanche photodiodes." Applied Physics Letters 51, no. 19 (November 9, 1987): 1493–94. http://dx.doi.org/10.1063/1.98665.
Full textTan, Chee Hing, Anton Velichko, Leh Woon Lim, and Jo Shien Ng. "Few-photon detection using InAs avalanche photodiodes." Optics Express 27, no. 4 (February 15, 2019): 5835. http://dx.doi.org/10.1364/oe.27.005835.
Full textMcIntosh, K. A., R. J. Molnar, L. J. Mahoney, K. M. Molvar, N. Efremow, and S. Verghese. "Ultraviolet photon counting with GaN avalanche photodiodes." Applied Physics Letters 76, no. 26 (June 26, 2000): 3938–40. http://dx.doi.org/10.1063/1.126827.
Full textS.A. Bordakevich, S. A., A. A. Kielbowicz, I. H. López Grande, and M. A. Larotonda. "PHOTON COUNTING MODULE BASED ON AVALANCHE PHOTODIODES." Anales AFA 28, no. 4 (January 15, 2018): 99–105. http://dx.doi.org/10.31527/analesafa.2018.28.4.99.
Full textDautet, Henri, Pierre Deschamps, Bruno Dion, Andrew D. MacGregor, Darleene MacSween, Robert J. McIntyre, Claude Trottier, and Paul P. Webb. "Photon counting techniques with silicon avalanche photodiodes." Applied Optics 32, no. 21 (July 20, 1993): 3894. http://dx.doi.org/10.1364/ao.32.003894.
Full textMin Ren, Xiaoguang Zheng, Yaojia Chen, Xiao Jie Chen, Erik B. Johnson, James F. Christian, and Joe C. Campbell. "Al0.8Ga0.2As Avalanche Photodiodes for Single-Photon Detection." IEEE Journal of Quantum Electronics 51, no. 11 (November 2015): 1–6. http://dx.doi.org/10.1109/jqe.2015.2491648.
Full textDissertations / Theses on the topic "Photodiodes avalanche ?? photon unique"
B??rub??, Beno??t-Louis. "Conception de matrices de diodes avalanche ?? photon unique sur circuits int??gr??s CMOS 3D." Thèse, Universit?? de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/92.
Full textBérubé, Benoît-Louis. "Conception de matrices de diodes avalanche à photon unique sur circuits intégrés CMOS 3D." Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/92.
Full textPellion, Denis. "Modélisation, fabrication et évaluation des photodiodes à avalanche polarisées en mode Geiger pour la détection du photon unique dans les applications Astrophysiques." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00358847.
Full textDans l'état de l'art le meilleur détecteur de lumière est aujourd'hui le Photomultiplicateur (PMT), grâce à ses caractéristiques de sensibilité et de vitesse. Mais il présente quelques inconvénients : faible efficacité quantique, coût, poids etc. Nous présentons dans cette thèse une nouvelle technologie alternative : les compteurs de photons sur semi-conducteur, constitués de photodiodes polarisées en mode Geiger.
Ce mode de fonctionnement permet d'obtenir un effet de multiplication au moins identique à celui des PMT. Un modèle physique et électrique a été développé pour reproduire le comportement de ce détecteur.
Nous présentons ensuite dans ce travail de thèse un procédé technologique original permettant la réalisation de ces dispositifs dans la centrale de technologie du LAAS-CNRS, avec la simulation de chaque opération du processus.
Nous avons mis au point une fiche pour la caractérisation électrique des dispositifs, du mode statique au mode dynamique, et vérifié la conformité aux simulations SILVACO, et au modèle initial. Les résultats obtenus sont déjà excellents, compte tenu qu'il s'agit d'une première étape de prototypage, et comparables avec les résultats publiés dans la littérature.
Ces composants sur silicium peuvent intervenir dans toutes les applications où il y a un photomultiplicateur, et le remplacer. Les applications sont donc très vastes et la croissance du marché très rapide. Nous présentons une première expérience d'astrophysique installée au Pic du Midi qui a détecté des flashs Tcherenkov de rayons cosmiques avec cette nouvelle technologie à semi-conducteur.
Panglosse, Aymeric. "Modélisation pour la simulation et la prédiction des performances des photodiodes à avalanche en mode Geiger pour Lidars spatiaux." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0046.
Full textThis work focuses on modelling for simulation and prediction purposes ofCMOS SPADs performance parameters used in spaceborne Lidars. The innovative side ofthis work lies in a new methodology based on physical models for semiconductor devices,measurements performed on the targeted CMOS process and commercial simulation tools topredict CMOS SPADs performances. This method allows to get as close as possible to theprocess reality and to improve predictions. A set of SPAD has been designed and fabricated,and is used for measurements and model validation. SPAD design has been done with respectto CNES and Airbus Defence Space Lidar specification, in order to produce devices that willimprove our knowledge in terms of understanding of the involved physical mechanisms, SPADsdesign and test method, for a possible integration within their future spaceborne Lidars
Parent, Samuel. "Conception, caractérisation et optimisation de SPAD en technologie Dalsa HV CMOS 0.8 μm pour intégration dans un 3D-SiPM." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8850.
Full textAbstract : Single Photon Avalanche Diodes (SPAD) generate much interest in applications which require single photon detection and excellent timing resolution, such as high energy physics and medical imaging. In fact, SPAD arrays such as Silicon PhotoMultipliers (SiPM) are gradually replacing PhotoMultiplier Tubes (PMT) and Avalanche PhotoDiodes (APD). There is now a trend moving towards SPAD arrays in CMOS technologies with smart pixels control for high timing demanding applications. Making SPAD in commercial CMOS technologies provides several advantages over optoelectronic processes such as lower costs, higher production capabilities, easier electronics integration and system miniaturization. However, the major drawback is the lack of flexibility when designing the SPAD architecture because all fabrication steps are fixed by the CMOS technology used. Another drawback of CMOS SPAD arrays is the loss of photosensitive areas caused by the CMOS circuits integration. This document presents SPAD design, characterization and optimization made in a commercial CMOS technology (Teledyne DALSA 0.8 µm HV CMOS - TDSI CMOSP8G). Custom process variations have been performed in partnership with the CMOS foundry to optimize the SPAD while keeping the CMOS line compatibility. The realized SPAD and SPAD arrays are dedicated to 3D integration with either low-cost TDSI CMOS electronics or advanced deep sub-micron CMOS electronics to perform a 3D digital SiPM (3D-SiPM). The novel 3D-SiPM is intended to replace PMT, APD and commercially available SiPM in timing demanding applications. The group main objective is to develop a 10 ps timing resolution 3D-SiPM for use in high energy physics and medical imaging applications. Those applications require reliable technologies with a certified production capability, which justifies the actual effort to use commercial CMOS line to develop our 3D-SiPM. This dissertation focuses on SPAD design, characterization and optimization made in the TDSI-CMOSP8G technology.
Tapan, Ilhan. "Avalanche photodiodes as proportional photon detectors." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389143.
Full textVestby, Aksel Jan Verne. "Calculation of Terminal Currents in Single Photon Excited Avalanche Photodiodes." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19691.
Full textStrasburg, Jana Dee. "Characterization of avalanche photodiode arrays for temporally resolved photon counting /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9710.
Full textZhang, Yun. "Fabrication and characterization of GaN visible-blind ultraviolet avalanche photodiodes." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29604.
Full textCommittee Chair: Shen, Shyh-Chiang; Committee Member: Doolittle, William A.; Committee Member: Dupuis, Russell Dean. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Devita, Marie. "Mesure et dangerosité des métaux nobles pour les photodétecteurs à avalanche à photon unique." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD029/document.
Full textNoble metals (Au, Ag, Pt, Ir, Pd and Ru) are used for the fabrication of microelectronics devices or can be brought by manufacturing tools (alloy components for example). It is well known that these impurities are detrimental to the efficiency of the devices. This implies a real and present need for control of their introduction in clean rooms to diagnose as soon as possible a contamination. Yet, there are no industrial technique for their follow-up at levels about 5.109 at.cm-2 - ITRS recommendations. The relevance of these recommendations according to the electronic device (SPAD in particular) could be questioned. At first, this study consisted in developing a physicochemical technique for the analysis of noble metals on Si wafers by VPD-DC-ICPMS. Then, their dangerousness towards tools and devices was established according to their behavior in temperature and the DCR generated on SPAD devices
Books on the topic "Photodiodes avalanche ?? photon unique"
Dolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.
Find full textWright, A. G. Why photomultipliers? Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0001.
Full textBook chapters on the topic "Photodiodes avalanche ?? photon unique"
Razeghi, Manijeh. "Single-Photon Avalanche Photodiodes." In Technology of Quantum Devices, 425–55. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_12.
Full textVERT, ALEXEY, STANSILAV SOLOVIEV, JODY FRONHEISER, and PETER SANDVIK. "SOLAR-BLIND SINGLE-PHOTON 4H-SiC AVALANCHE PHOTODIODES." In Selected Topics in Electronics and Systems, 85–92. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814287876_0009.
Full textFisher, Edward M. D. "Principles and Early Historical Development of Silicon Avalanche and Geiger-Mode Photodiodes." In Photon Counting - Fundamentals and Applications. InTech, 2018. http://dx.doi.org/10.5772/intechopen.72148.
Full textMelnychuk, Dmytro, and Boguslaw Zwieglinski. "Low-Energy Photon Detection with PWO-II Scintillators and Avalanche Photodiodes in Application to High-Energy Gamma-Ray Calorimetry." In Advances in Photodiodes. InTech, 2011. http://dx.doi.org/10.5772/14191.
Full textLiang, Yan, and Heping Zeng. "High-Speed Single-Photon Detection with Avalanche Photodiodes in the Near Infrared." In Optoelectronics - Materials and Devices. InTech, 2015. http://dx.doi.org/10.5772/60481.
Full textConference papers on the topic "Photodiodes avalanche ?? photon unique"
Campbell, Joe C. "Single Photon Avalanche Photodiodes." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ofc.2009.owx1.
Full textMcClintock, Ryan, Jose L. Pau, Kathryn Minder, Can Bayram, and Manijeh Razeghi. "III-nitride photon counting avalanche photodiodes." In Integrated Optoelectronic Devices 2008, edited by Rengarajan Sudharsanan and Christopher Jelen. SPIE, 2008. http://dx.doi.org/10.1117/12.776265.
Full textItzler, Mark A., Xudong Jiang, Rafael Ben-Michael, Bruce Nyman, and Krystyna Slomkowski. "Single photon avalanche photodiodes for near-infrared photon counting." In Integrated Optoelectronic Devices 2008, edited by Rengarajan Sudharsanan and Christopher Jelen. SPIE, 2008. http://dx.doi.org/10.1117/12.768564.
Full textTaylor, D. M., J. G. Rarity, C. Jackson, and A. Mathewson. "Novel geometry photon counting silicon avalanche photodiodes." In 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1314200.
Full textBlazej, Josef. "New Materials for Photon Counting Avalanche Photodiodes." In 4th International Conference on Photonics, Optics and Laser Technology. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005656802360240.
Full textRobinson, Deborah L., and Brian D. Metscher. "Cooled Avalanche Photodiodes Used For Photon Detection." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by Robert L. Caswell. SPIE, 1987. http://dx.doi.org/10.1117/12.939855.
Full textCova, Sergio D., Andrea L. Lacaita, Franco Zappa, and Piergiorgio G. Lovati. "Avalanche photodiodes for near-infrared photon counting." In Photonics West '95, edited by Joseph R. Lakowicz. SPIE, 1995. http://dx.doi.org/10.1117/12.208529.
Full textDautet, Henri, P. Deschamps, Bruno Dion, Andrew D. MacGregor, D. MacSween, Robert J. McIntyre, C. Trottier, and Paul P. Webb. "Photon-counting techniques with silicon avalanche photodiodes." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Joseph R. Lakowicz and Richard B. Thompson. SPIE, 1993. http://dx.doi.org/10.1117/12.144738.
Full textThomas, O., Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields. "Efficient photon number detection with silicon avalanche photodiodes." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943467.
Full textThomas, Oliver, Zhiliang L. Yuan, James F. Dynes, Andrew W. Sharpe, and Andrew J. Shields. "Efficient photon number detection with silicon avalanche photodiodes." In SPIE OPTO, edited by Zameer U. Hasan, Philip R. Hemmer, Hwang Lee, and Charles M. Santori. SPIE, 2011. http://dx.doi.org/10.1117/12.875116.
Full text