Academic literature on the topic 'Photodynamic treatment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photodynamic treatment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photodynamic treatment"
Poljacki, Mirjana, Marina Jovanovic, Ljubinka Matovic, Branislava Lugonja, Branislava Gajic, and Tatjana Ros. "Topical photodynamic therapy." Archive of Oncology 14, no. 1-2 (2006): 39–44. http://dx.doi.org/10.2298/aoo0602039p.
Full textSazhnev, Dmitrii Igorevich, Alexandr Alexeevich Andreev, and Alexandr Anatol'evich Glukhov. "Photodynamic therapy." Journal of Experimental and Clinical Surgery 12, no. 2 (March 29, 2019): 141–46. http://dx.doi.org/10.18499/2070-478x-2019-12-2-141-146.
Full textManyak, M. J., A. Russo, P. D. Smith, and E. Glatstein. "Photodynamic therapy." Journal of Clinical Oncology 6, no. 2 (February 1988): 380–91. http://dx.doi.org/10.1200/jco.1988.6.2.380.
Full textHuang, Zheng. "A Review of Progress in Clinical Photodynamic Therapy." Technology in Cancer Research & Treatment 4, no. 3 (June 2005): 283–93. http://dx.doi.org/10.1177/153303460500400308.
Full textHasan Zeynalova, Jala, Gulnara Salam Mammedova, Gunel Mammad Sultanova, İrada Arif Mammedxanova, Sevda Tariyel Huseynova, and Shahla Rafael Yusubova. "TREATMENT OF ORAL LICHEN PLANUS LICHEN PLANUS WITH PHOTODYNAMIC THERAPY." NATURE AND SCIENCE 14, no. 09 (November 23, 2021): 10–13. http://dx.doi.org/10.36719/2707-1146/14/10-13.
Full textGiovannini, A., P. Neri, L. Mercanti, and C. Brue. "Photodynamic treatment versus photodynamic treatment associated with systemic steroids for idiopathic choroidal neovascularisation." British Journal of Ophthalmology 91, no. 5 (January 3, 2007): 620–23. http://dx.doi.org/10.1136/bjo.2006.103135.
Full textZhao, Tianyuan, Jungyul Song, Yuzhuo Ping, and Meihua Li. "The Application of Antimicrobial Photodynamic Therapy (aPDT) in the Treatment of Peri-Implantitis." Computational and Mathematical Methods in Medicine 2022 (May 12, 2022): 1–8. http://dx.doi.org/10.1155/2022/3547398.
Full textWarloe, Trond, and Sigrid I. Kvaal. "Photodynamic Treatment of Oral Lesions." Journal of Environmental Pathology, Toxicology and Oncology 26, no. 2 (2007): 127–33. http://dx.doi.org/10.1615/jenvironpatholtoxicoloncol.v26.i2.70.
Full textGümüs, Pinar, and Nurcan Buduneli. "Photodynamic Therapy and Periodontal Treatment." Clinical Anti-Inflammatory & Anti-Allergy Drugs 2, no. 1 (May 17, 2016): 38–42. http://dx.doi.org/10.2174/221270380201160517190017.
Full textÖZCAN, Erkan. "Periodontitis and Photodynamic Treatment: Review." Turkiye Klinikleri Journal of Dental Sciences 21, no. 3 (2015): 229–34. http://dx.doi.org/10.5336/dentalsci.2011-25591.
Full textDissertations / Theses on the topic "Photodynamic treatment"
Hopper, Colin. "Photodynamic therapy for the treatment of oral cancer." Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1444444/.
Full textAlsaif, Aysha S. Y. A. S. "Treatment of dental plaque biofilms using photodynamic therapy." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18523/.
Full textDronyk, I. I. "Photodynamic therapy in complex treatment of generalized periodontitis." Thesis, БДМУ, 2021. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/19118.
Full textStritt, Andrea Christina. "Photodynamic therapy in the treatment of actinic keratosis /." Bern : [s.n.], 2008. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textMillson, Charles Edward. "Photodynamic therapy for the treatment of helicobacter pylori infection." Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281686.
Full textPereira, José Carlos Ribeiro Ferreira. "Cytoskeleton regulation in bladder cancer cells after photodynamic treatment." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21089.
Full textA terapia fotodinâmica (PDT) é uma modalidade promissora para o tratamento do cancro. Esta terapia baseia-se na interação entre um composto químico (fotossensibilizador, PS), luz com um determinado comprimento de onda e oxigénio molecular para originar a produção de espécies reativas de oxigénio (ROS). Devido à sua elevada reatividade, estas espécies tóxicas podem causar danos severos conduzindo à morte celular. Atualmente, os PS disponíveis na clínica para o tratamento de tumores apresentam baixa seletividade para as células tumorais. Estudos anteriores do nosso grupo descreveram uma porfirina conjugada com unidades dendríticas de galactose (PorGal8) como um novo PS solúvel em solução aquosa, capaz de gerar ROS após fotoativação e com reconhecimento por parte de proteínas (galectina-1) que se encontram sobreexpressas nas células do cancro da bexiga. Vários estudos têm descrito alterações no citoesqueleto em resposta ao tratamento fotodinâmico. No entanto, a contribuição da desorganização do citoesqueleto na morte celular induzida por PDT encontra-se pouco esclarecida. Neste trabalho, avaliámos de que forma alterações nos constituintes do citoesqueleto – filamentos de actina, filamentos intermédios e microtúbulos – estão relacionadas com morte celular induzida por PDT com PorGal8. O uptake de PorGal8 em duas linhas celulares do cancro da bexiga derivadas de carcinoma de células transicionais (UM-UC-3 e HT-1376), foi dependente da concentração. O uptake celular de PorGal8 foi superior nas células UM-UC-3, que exibem níveis superiores da proteína galectina-1, comparativamente com as células HT-1376. PorGal8 mostrou não ser tóxico no escuro. A fotoativação da PorGal8 resultou numa fototoxicidade significativamente superior nas células UM-UC-3 relativamente às células HT-1376. A PorGal8 não induziu alterações significativas nos níveis de proteína α-tubulina nas células UM-UC-3. No entanto, observou-se uma redução significativa nos níveis de α-tubulina nas células HT-1376 vinte e quatro horas após tratamento com irradiação. Apesar de se ter observado uma recuperação na organização dos microtúbulos em algumas células, a intensidade da fluorescência diminuiu consideravelmente na maior parte das células HT-1376. Uma redução significativa nos níveis de proteína dos filamentos intermédios (vimentina) foi observada em ambas as linhas celulares vinte e quatro horas após irradiação. Trinta minutos após a irradiação, as células UM-UC-3 e HT-1376 apresentaram uma clara retração nos filamentos de actina com perda de fibras de stress. Ao contrário das células UM-UC-3 em que não se verificaram sinais de recuperação, em algumas células HT-1376 verificou-se uma certa reorganização dos filamentos de actina, com curtas fibras de stress, longas extensões, grandes filopodia, o que parece sugerir uma possível recuperação das células HT-1376. A RhoA, uma proteína da família de pequenas proteínas GTPases, descrita como estando relacionada com a expressão da galectina-1, foi adicionalmente avaliada. Resultados preliminares indicaram que a PorGal8 induziu uma tendência para aumentar os níveis de RhoA nas células HT-1376 vinte e quatro horas após tratamento com irradiação. Concluindo, os nossos resultados contribuem para o esclarecimento dos mecanismos subjacentes dos efeitos fototóxicos da PorGal8. Uma melhor compreensão dos intervenientes e das alterações induzidas imediatamente após PDT nas estruturas do citoesqueleto em cancros resistentes à terapia, poderão contribuir para o desenvolvimento de novos agentes terapêuticos adjuvantes à PDT.
Photodynamic therapy (PDT) is a promising modality for the treatment of cancer that involves light of an appropriate wavelength and a photosensitizing drug (photosensitizer, PS), used in conjunction with molecular oxygen, leading to the production of reactive oxygen species (ROS). In a biological environment, these toxic species can interact with the cellular constituents eliciting cell death. Currently, the PS available show poor tumor specificity. Previous work from our research group reported a porphyrin conjugated with dendritic units of galactose (PorGal8) as a new water soluble PS, able to generate ROS after photoactivation and exhibiting increased selectivity to bladder cancer cells overexpressing galectin-1. Several studies reported cytoskeleton alterations derived from photodynamic treatments. However, the role of cytoskeleton disorganization in cell death induced by PDT remains unclear. In this work we evaluated whether changes in the cytoskeletal constituents - actin filaments, intermediate filaments and microtubules - are correlated with cell death triggered by PDT with PorGal8. The uptake of PorGal8 in two bladder cancer lines derived from transitional cell carcinoma (UM-UC-3 and HT-1376 cells), was concentration dependent. Cellular uptake of PorGal8 was higher in UM-UC-3 cells that express higher levels of galectin-1 protein than HT-1376 cells. PorGal8 was nontoxic in dark. Photoactivation of PorGal8 resulted in a significantly higher phototoxicity in UM-UC-3 cells than HT-1376 cells. PorGal8 did not change the α-tubulin protein levels in UM-UC-3 cells but reduced α-tubulin twenty-four hours after photodynamic activation in HT-1376 cells. Although a few cells showed a recovery in microtubules organization, the fluorescence intensity decreased noticeably in most of the HT-1376 cells. A significant decrease in intermediate filaments (vimentin) protein levels was exhibited in both cell lines twenty-hours after irradiation. Thirty minutes post-irradiation, UM-UC-3 and HT-1376 cells showed a clear retraction of actin filaments with loss of stress fibers. Although no recovery was observed in UM-UC-3 cells, some cells present some reorganization in actin filaments, presenting short stress fibers, long extensions, like large filopodia, suggesting a possible recovery in HT-1376 cells. A small GTPases family protein, RhoA, referred to be involved with galectin-1 expression, was also evaluated, with preliminary results indicating a tendency towards an increase in HT-1376 cells twenty-four hours after therapy. Overall, our results give new insights into the mechanisms underlying the phototoxic effects of PorGal8. Better understanding the intrinsic web of events and alterations on cytoskeleton structures induced immediately after photodynamic treatment in resistant cancers may contribute to envisage new potential therapeutic adjuvants for PDT.
Mitzel, Frieder. "Synthesis of acetylenic phthalocyanine analogues as sensitisers for photodynamic therapy." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249357.
Full textRogowska, Agnieska Zofia. "Photodynamic therapy for the treatment of cancer of the pancreas." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394933.
Full textThissen, Monique Rosalie Thérèse Mathieu. "Treatment of basal cell carcinoma in the light of photodynamic therapy." [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 2000. http://arno.unimaas.nl/show.cgi?fid=5962.
Full textFielding, David Ivor Keith. "Effects of interstitial laser photoagulation and photodynamic therapy on lung parenchyma." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264699.
Full textBooks on the topic "Photodynamic treatment"
service), SpringerLink (Online, ed. Photodynamic Therapy in Dermatology. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textKessel, David. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XIX : 23-25 January 2010, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2010.
Find full textKessel, David. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XVIII : 24-25 January 2009, San Jose, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.
Find full textCalif.) Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy (Conference) (22nd 2013 San Francisco. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XXII, 2-4 February 2013 San Francisco, California, United States. Edited by Kessel David editor, Hasan Tayyaba editor, SPIE (Society), and SPIE Photonics West (Conference) (2013 : San Francisco, Calif.). Bellingham, Washington: sponsored and published by SPIE, 2013.
Find full textKessel, David, and Tayyaba Hasan. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XXI : 21-22 January 2012, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2012.
Find full text(Society), SPIE, ed. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XX : 22-23 January 2011, San Francisco, California, United States. Bellingham, Wash: SPIE, 2011.
Find full textname, No. Optical methods for tumor treatment and detection: Mechanisms and techniques in photodynamic therapy XII : 25-26 and 28 January 2003, San Jose, California, USA. Bellingham, WA: SPIE, 2003.
Find full textDavies-Shawhyde, Nick. Metronomic photodynamic therapy as a treatment for malignant brain tumours. 2006.
Find full textF, Horrobin David, ed. New approaches to cancer treatment: Unsaturated lipids and photodynamic therapy. Edinburgh: Churchill Livingstone, 1994.
Find full textBook chapters on the topic "Photodynamic treatment"
DeLaney, T. F. "Photodynamic Therapy." In New Directions in Cancer Treatment, 93–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83405-9_5.
Full textJemec, Gregor B. E. "Photodynamic Therapy." In Non-Surgical Treatment of Keratinocyte Skin Cancer, 133–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-79341-0_16.
Full textNúñez, Tomás G., and Tamara Portas. "Application of Photodynamic Treatment." In Fluorescence Imaging for Surgeons, 279–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15678-1_29.
Full textFabris, Clara, Marina Soncin, Monica Camerin, Furio Corsi, Ilaria Cattin, Fabrizio Cardin, Laura Guidolin, Giulio Jori, and Olimpia Coppellotti. "Photodynamic Therapy: A Novel Promising Approach for the Treatment of Spontaneous Microbial Infections in Pet Animals." In Photodynamic Therapy, 255–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39629-8_12.
Full textFerreira-Strixino, Juliana, and Elodie Debefve. "Photodynamic therapy in cancer treatment." In Lasers in Dentistry, 346–50. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118987742.ch44.
Full textGold, Michael H. "Photodynamic Therapy for the Treatment of Sebaceous Gland Hyperplasia." In Photodynamic Therapy in Dermatology, 47–51. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1298-5_4.
Full textAkir, Surianti Binti Md, and Peter Foley. "Topical Methyl Aminolevulinate Photodynamic Therapy for the Treatment of Actinic Keratosis." In Photodynamic Therapy in Dermatology, 61–75. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1298-5_6.
Full textGold, Michael H. "Photodynamic Therapy for the Treatment of Verrucae, Condylomata Acuminata, and Molluscum Contagiosum Lesions." In Photodynamic Therapy in Dermatology, 97–103. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1298-5_10.
Full textShokrollahi, Kayvan, and Charlotte Hardman. "Photodynamic Therapy for the Treatment of Scars." In Laser Management of Scars, 87–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52919-2_13.
Full textAgnihotry, Shikha, Mohammad Anas, Ajeet K. Srivastav, Deepti Chopra, Jaya Upadhayay, and Syed Faiz Mujtaba. "Role of Photodynamic Therapy in Cancer Treatment." In Photocarcinogenesis & Photoprotection, 159–77. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5493-8_14.
Full textConference papers on the topic "Photodynamic treatment"
Chang, Kwang Poo, Bala K. Kolli, Dennis K. P. Ng, Laura Manna, Robert L. Elliott, Raffaele Corso, X. P. Jiang, et al. "Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides." In Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, edited by Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2281437.
Full textBrovko, Lubov, Nadya A. Romanova, Christina Leslie, Helene Ollivier, and Mansel W. Griffiths. "Photodynamic treatment for surface sanitation." In Photonics North 2005, edited by Warren C. W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson, and Robert A. Weersink. SPIE, 2005. http://dx.doi.org/10.1117/12.628596.
Full textAvetisov, Sergey E., Maria V. Budzinskaja, Tatyana N. Kiseleva, Natalia V. Balatskaya, Irina V. Gurova, Victor B. Loschenov, Sergey A. Shevchik, Sergey G. Kuzmin, and Georgy N. Vorozhtsov. "Photodynamic Therapy for Treatment Subretinal Neovascularization." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ecbo.2007.6632_63.
Full textLynch, David H., Sandra Haddad, Chistooher J. Jolles, Vernon J. King, Mark J. Ott, Bekkie Robertson, and Richard C. Straight. "Immunologic Effects Of Peritoneal Photodynamic Treatment." In OE/LASE '89, edited by Thomas J. Dougherty. SPIE, 1989. http://dx.doi.org/10.1117/12.978004.
Full textAvetisov, Sergey E., Maria V. Budzinskaja, Tatyana N. Kiseleva, Natalia V. Balatskaya, Irina V. Gurova, Viktor B. Loschenov, Sergey A. Shevchik, Sergey G. Kuzmin, and Georgy N. Vorozhtsov. "Photodynamic therapy for treatment subretinal neovascularization." In European Conference on Biomedical Optics, edited by Alfred Vogel. SPIE, 2007. http://dx.doi.org/10.1117/12.730392.
Full textOleinick, Nancy L., Munna L. Agarwal, Antonio R. Antunez, Marian E. Clay, Helen H. Evans, Ella Jo Harvey, Ronald M. Rerko, and Liang-yan Xue. "Effects of photodynamic treatment on DNA." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Steven L. Jacques. SPIE, 1991. http://dx.doi.org/10.1117/12.44125.
Full textDimmer, Jesica Ayelen, Camila Ramos Silva, Susana Carolina Nunez Montoya, Jose Luis Cabrera, and Martha S. Ribeiro. "Photodynamic activity of natural anthraquinones on fibroblasts." In Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases, edited by Tianhong Dai. SPIE, 2018. http://dx.doi.org/10.1117/12.2290666.
Full textHendrich, Christian, Heyke C. Diddens, Hany R. Nosir, and Werner E. Siebert. "Treatment of rheumatoid arthritis using photodynamic therapy." In Fifth International Photodynamic Association Biennial Meeting, edited by Denis A. Cortese. SPIE, 1994. http://dx.doi.org/10.1117/12.203423.
Full textRuiz, Alberto J., Ethan Philip M. LaRochelle, M. Shane Chapman, and Brian W. Pogue. "Low-cost smartphone-based dosimeter for individualization of PDT treatment planning for protoporphyrin IX based skin cancer treatment (Conference Presentation)." In 17th International Photodynamic Association World Congress, edited by Tayyaba Hasan. SPIE, 2019. http://dx.doi.org/10.1117/12.2528176.
Full textNishimura, Takahiro, and Kunio Awazu. "Fluorescence imaging of photosensitizers in biological tissues for photodynamic diagnosis during interstitial photodynamic therapy." In Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVIII, edited by David H. Kessel and Tayyaba Hasan. SPIE, 2019. http://dx.doi.org/10.1117/12.2508155.
Full textReports on the topic "Photodynamic treatment"
Akens, Margarete K., and Cari M. Whyne. Photodynamic Therapy Treatment to Enhance Fracture Healing. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada611585.
Full textAkens, Margarete K., Cari M. Whyne, Brian C. Wilson, Albert J. Yee, and Diane Nam. Photodynamic Therapy Treatment to Enhance Fracture Healing. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada578788.
Full textAlarcón, Marco, Tatiana Amagua, Donald Morales, and Ana Lucia Seminario. EFFECT OF PERIODONTAL TREATMENT IN HIV+ PATIENS: A SYSTEMATIC REVIEW. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0032.
Full textOliveira, Analú, Túlio Ferrisse, Fernanda Basso, Carla Fontana, Elisa Giro, and Fernanda Brighenti. A systematic review and meta-analysis of the effect of photodynamic therapy for treatment of oral mucositis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2021. http://dx.doi.org/10.37766/inplasy2021.3.0006.
Full textGomer, Charles J. Photodynamic Therapy Oxidative Stress as a Molecular Switch Controlling Therapeutic Gene Expression for the Treatment of Locally Recurrent Breast Carcinoma. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada396793.
Full textLin, Yao, Junbing He, Liangping Chen, xiaozhu Chen, Shuanglin Liao, Shuai Yang, Yingying Lin, Shuncheng Bai, and Chuhui Huang. A comparative evaluation of lasers and photodynamic therapy in the non-surgical treatment of peri-implant diseases: A Bayesian network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2022. http://dx.doi.org/10.37766/inplasy2022.1.0020.
Full textLi, Haitao, Gongwei Long, and Jun Tian. Efficacy and Safety of Photodynamic Therapy for Non–muscle-invasive Bladder Cancer: A Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0043.
Full textLi, Yanhui. Efficacy of non-invasive photodynamic therapy for female lower reproductive tract diseases associated with HPV infection: a comprehensive meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0092.
Full textDahm, Philipp, Michelle Brasure, Elizabeth Ester, Eric J. Linskens, Roderick MacDonald, Victoria A. Nelson, Charles Ryan, et al. Therapies for Clinically Localized Prostate Cancer. Agency for Healthcare Research and Quality (AHRQ), September 2020. http://dx.doi.org/10.23970/ahrqepccer230.
Full text