Academic literature on the topic 'Photoemission. Electron microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photoemission. Electron microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photoemission. Electron microscopy"

1

Kang, Tai-Hee, Ki-jeong Kim, C. C. Hwang, S. Rah, C. Y. Park, and Bongsoo Kim. "PLS photoemission electron microscopy beamline." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468 (July 2001): 581–85. http://dx.doi.org/10.1016/s0168-9002(01)00417-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tinti, G., H. Marchetto, C. A. F. Vaz, et al. "The EIGER detector for low-energy electron microscopy and photoemission electron microscopy." Journal of Synchrotron Radiation 24, no. 5 (2017): 963–74. http://dx.doi.org/10.1107/s1600577517009109.

Full text
Abstract:
EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modificatio
APA, Harvard, Vancouver, ISO, and other styles
3

Giesen, Margret, Raymond J. Phaneuf, Ellen D. Williams, and Theodore L. Einstein. "Photoemission electron microscopy of Schottky contacts." Surface Science 396, no. 1-3 (1998): 411–21. http://dx.doi.org/10.1016/s0039-6028(97)00696-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keutner, Christoph, Alex von Bohlen, Ulf Berges, Philipp Espeter, Claus M. Schneider, and Carsten Westphal. "Photoemission Electron Microscopy and Scanning Electron Microscopy ofMagnetospirillum magnetotacticum’s Magnetosome Chains." Analytical Chemistry 86, no. 19 (2014): 9590–94. http://dx.doi.org/10.1021/ac502050j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Man, K. L., and M. S. Altman. "Low energy electron microscopy and photoemission electron microscopy investigation of graphene." Journal of Physics: Condensed Matter 24, no. 31 (2012): 314209. http://dx.doi.org/10.1088/0953-8984/24/31/314209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berger, Joel A., John T. Hogan, Michael J. Greco, W. Andreas Schroeder, Alan W. Nicholls, and Nigel D. Browning. "DC Photoelectron Gun Parameters for Ultrafast Electron Microscopy." Microscopy and Microanalysis 15, no. 4 (2009): 298–313. http://dx.doi.org/10.1017/s1431927609090266.

Full text
Abstract:
AbstractWe present a characterization of the performance of an ultrashort laser pulse driven DC photoelectron gun based on the thermionic emission gun design of Togawa et al. [Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). Phys Rev Spec Top-AC10, 020703]. The gun design intrinsically provides adequate optical access and accommodates the generation of ∼1 mm2 electron beams while contributing negligible divergent effects at the anode aperture. Both single-photon (with up to 20,000 electrons/pulse) and two-photon photoemission are observed from Ta and Cu(100) photocathod
APA, Harvard, Vancouver, ISO, and other styles
7

Hammond, C., A. Nichells, and N. E. Paton. "Photoemission electron microscopy of superplastic deformation processes." Metallography 20, no. 2 (1987): 199–212. http://dx.doi.org/10.1016/0026-0800(87)90029-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marx, G. K. L., P. O. Jubert, A. Bischof, and R. Allenspach. "Probing depth of threshold photoemission electron microscopy." Applied Physics Letters 83, no. 14 (2003): 2925–27. http://dx.doi.org/10.1063/1.1616651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

OHKOCHI, Takuo. "Photoemission Electron Microscopy (PEEM) on Insulating Samples." Hyomen Kagaku 34, no. 11 (2013): 586–91. http://dx.doi.org/10.1380/jsssj.34.586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Menteş, Tevfik Onur, and Andrea Locatelli. "Angle-resolved X-ray photoemission electron microscopy." Journal of Electron Spectroscopy and Related Phenomena 185, no. 10 (2012): 323–29. http://dx.doi.org/10.1016/j.elspec.2012.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Photoemission. Electron microscopy"

1

Fitzgerald, Joseph P. S. "Aberration Corrected Photoemission Electron Microscopy with Photonics Applications." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2192.

Full text
Abstract:
Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyper
APA, Harvard, Vancouver, ISO, and other styles
2

Stenmark, Theodore Axel. "Photoemission Electron Microscopy for Analysis of Dielectric Structures and the Goos-Hänchen Shift." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2991.

Full text
Abstract:
Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution electron images. Ultrafast pulse lasers allow for multi-photon PEEM where multiple visible or IR photons excite a single electron in a nonlinear process. The photoelectron yield in both cases is related to the near-field region of electromagnetic fields at the surface of the sample. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from
APA, Harvard, Vancouver, ISO, and other styles
3

Scheffler, Christopher M. "Localized Photoemission in Triangular Gold Antennas." Thesis, Portland State University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13808008.

Full text
Abstract:
<p> With the development of ultra-fast laser technology, several new imaging techniques have pushed optical resolution past the diffraction limit for traditional light-based optics. Advancements in lithography have enabled the straightforward creation of micron- and nanometer-sized optical devices. Exposing metal-dielectric structures to light can result in surface plasmon excitation and propagation along the transition interface, creating a surface plasmon polariton (SPP) response. Varying the materials or geometry of the structures, the plasmonic response can be tailored for a wide range of
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, Christian [Verfasser]. "Mapping of surface plasmon polariton fields by time-resolved photoemission electron microscopy: experiments, simulations, and applications / Christian Schneider." München : Verlag Dr. Hut, 2013. http://d-nb.info/1043892516/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chew, Soo Hoon [Verfasser], and Ulf [Akademischer Betreuer] Kleineberg. "Photoemission electron microscopy for nanoscale imaging and attosecond control of light-matter interaction at metal surfaces / Soo Hoon Chew ; Betreuer: Ulf Kleineberg." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1159506809/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Unuigbe, David Moweme. "Characterisation of silicon nanoparticles produced by mechanical attrition using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoemission spectroscopy." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/12105.

Full text
Abstract:
Includes abstract.<br>Includes bibliographical references.<br>The establishment of printing technologies, using nanoparticle based inks, promises inexpensive manufacture of electronic devices. However, to produce working devices, nanoparticles have to meet requirements on size, shape, and composition. In the application of silicon nanoparticles in electronics, it is important that a network of interconnecting particles is formed through which charge transport can take place. Of further importance is that there is an absence of surface oxide in order to maintain a direct silicon-silicon connect
APA, Harvard, Vancouver, ISO, and other styles
7

Sánchez-Barriga, Jaime. "A photoemission study of quasiparticle excitations, electron-correlation effects and magnetization dynamics in thin magnetic systems." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4849/.

Full text
Abstract:
This thesis is focused on the electronic, spin-dependent and dynamical properties of thin magnetic systems. Photoemission-related techniques are combined with synchrotron radiation to study the spin-dependent properties of these systems in the energy and time domains. In the first part of this thesis, the strength of electron correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) and hcp Co(0001) is investigated by means of spin- and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the th
APA, Harvard, Vancouver, ISO, and other styles
8

Domke, Andreas. "Chemistry and physics of diamond surfaces." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367131.

Full text
Abstract:
This thesis is concerned with the chemistry and physics of C(100) surfaces of diamond. The polished and cleaned C(100) surface is examined by surface microscopy (Atomic-force Microscopy), electron diffraction (Low-energy Electron Diffraction) and photoemission (X-ray Photoelectron Spectroscopy and Ultra-violet Photoelectron Spectroscopy). Results are presented on the presence of oxygen, nitrogen and hydrogen/deuterium on the C(100) surface. Finally, the valence band structure of diamond is probed by angle-resolved photoemission. We have confirmed by AFM that the grooves from the soft polishing
APA, Harvard, Vancouver, ISO, and other styles
9

Cai, Wei. "Ballistic Electron Emission Microscopy and Internal Photoemission Study on Metal Bi-layer/Oxide/Si, High-k Oxide/Si, and “End-on” Metal Contacts to Vertical Si Nanowires." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269521615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, X. (Xinying). "Electronic and photocatalytic properties of transition metal decorated molybdenum disulfide." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526220086.

Full text
Abstract:
Abstract This thesis is dedicated to realizations and physical understanding of electronic and photocatalytic properties after decorating transition metals to the semiconducting molybdenum disulfide. Synthesized via facile wet chemical methods, the MoS₂-Au, MoS₂-Au-Ni and MoS₂-Ag-Ni composites were formed as binary or ternary compounds. The Au nanoparticles are stably joined to the MoS₂ matrix without deteriorating layered structures of the host. After introducing the Au nanoglue as a common buffer, a metallic contact is reached between Ni and MoS₂, and attributed to new electron migration cha
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Photoemission. Electron microscopy"

1

Nanotekunorojī, Sōgō Shien Purojekuto Wākushoppu (2005 Tsukuba-shi Japan). Nanotekunorojī Sōgō Shien Purojekuto Wākushoppu: LEEM/PEEM o mochiita hyōmen kenkyū no atarashii tenkai : PF Kenkyūkai = Progresses in low energy electron microscopy and photoemission electron microscopy studies (LEEM & PEEM). Kō-enerugī Kasokuki Kenkyū Kikō, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nanotekunorojī Sōgō Shien Purojekuto Wākushoppu (2005 Tsukuba-shi, Japan). Nanotekunorojī Sōgō Shien Purojekuto Wākushoppu: LEEM/PEEM o mochiita hyōmen kenkyū no atarashii tenkai : PF Kenkyūkai = Progresses in low energy electron microscopy and photoemission electron microscopy studies (LEEM & PEEM). Kō-enerugī Kasokuki Kenkyū Kikō, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photoemission. Electron microscopy"

1

Feng, Jun, and Andreas Scholl. "Photoemission Electron Microscopy." In Springer Handbook of Microscopy. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fukumoto, Keiki. "Spin-Resolved Photoemission Electron Microscopy." In Compendium of Surface and Interface Analysis. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubo, Atsushi. "Time-Resolved Photoemission Electron Microscopy." In Compendium of Surface and Interface Analysis. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukumoto, K., Y. Yamada, T. Matsuki, et al. "Visualization of Ultrafast Electron Dynamics Using Time-Resolved Photoemission Electron Microscopy." In Springer Proceedings in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bauer, E., M. Mundschau, W. Święch, and W. Telieps. "Low Energy Electron Microscopy (LEEM) and Photoemission Microscopy (PEEM) of Semiconductor Surfaces." In Evaluation of Advanced Semiconductor Materials by Electron Microscopy. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0527-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinoshita, T. "Application of Photoemission Electron Microscopy to Magnetic Domain Imaging." In Nanoscale Spectroscopy and Its Applications to Semiconductor Research. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45850-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Petek, Hrvoje, and Atsushi Kubo. "Ultrafast photoemission electron microscopy: imaging light with electrons on femto-nano scale." In Springer Series in Chemical Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Locatelli, Andrea, and Tevfik Onur Menteş. "Chemical and Magnetic Imaging with X-Ray Photoemission Electron Microscopy." In Synchrotron Radiation. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55315-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kleibert, Armin. "Magnetism of Individual Nanoparticles Probed by X-Ray Photoemission Electron Microscopy." In New Trends in Nanoparticle Magnetism. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60473-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Le Guyader, L., S. El Moussaoui, M. Buzzi, and F. Nolting. "Catching the moment: magnetization dynamics studied with X-ray Photoemission Electron Microscopy." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photoemission. Electron microscopy"

1

Sun, Quan, Kosei Ueno, and Hiroaki Misawa. "Ultrafast Plasmons Probed by Photoemission Electron Microscopy." In International Symposium on Ultrafast Phenomena and Terahertz Waves. OSA, 2018. http://dx.doi.org/10.1364/isuptw.2018.tud3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohanty, Smruti Ranjan, Arunava Kar, Bibhuti Bhusan Jena, and Krishnakumar S. R. Menon. "Low energy electron microscopy and photoemission electron microscopy facility for spectromicroscopy studies at surfaces." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fukumoto, K., Y. Yamada, T. Matsuki, et al. "Visualization of ultrafast electron dynamics using time-resolved photoemission electron microscopy." In International Conference on Ultrafast Phenomena. OSA, 2014. http://dx.doi.org/10.1364/up.2014.09.wed.e.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meyer zu Heringdorf, Frank-J., Philip Kahl, Andreas Makris, Simon Sindermann, Daniel Podbiel, and Michael Horn-von Hoegen. "Signatures of plasmoemission in two photon photoemission electron microscopy." In SPIE OPTO, edited by Markus Betz, Abdulhakem Y. Elezzabi, and Kong-Thon Tsen. SPIE, 2015. http://dx.doi.org/10.1117/12.2082610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaiser, Thomas, Matthias Falkner, Amit Vikram Singh, Matthias Zilk, Michael Steinert, and Thomas Pertsch. "Airy Plasmon Pulses investigated by Multiphoton Photoemission Electron Microscopy (PEEM)." In CLEO: QELS_Fundamental Science. OSA, 2019. http://dx.doi.org/10.1364/cleo_qels.2019.fth1c.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Amit Vikram, Matthias Falkner, Thomas Kaiser, Matthias Zilk, Michael Steinert, and Thomas Pertsch. "Airy Plasmon Pulses Investigated by Multiphoton Photoemission Electron Microscopy (PEEM)." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, D. H. "Soft X-Ray Photoemission Electron Microscopy Station with Polarized Radiation." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Petek, Hrvoje, and Atsushi Kubo. "Ultrafast Photoemission Electron Microscopy: Imaging Light with Electrons on the Femto-Nano Scale." In Plasmonics and Metamaterials. OSA, 2008. http://dx.doi.org/10.1364/meta_plas.2008.mthb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anders, Simone, Thomas Stammler, Howard A. Padmore, et al. "X-ray photoemission electron microscopy for the study of semiconductor materials." In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY. ASCE, 1998. http://dx.doi.org/10.1063/1.56923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anders, Simone. "Photoemission electron microscopy for the study of ferromagnetic and antiferromagnetic materials." In The 11th US national synchrotron radiation instrumentation conference (SRI99). AIP, 2000. http://dx.doi.org/10.1063/1.1291750.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photoemission. Electron microscopy"

1

Fitzgerald, Joseph. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.2190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stenmark, Theodore. Photoemission Electron Microscopy for Analysis of Dielectric Structures and the Goos-Hänchen Shift. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.2992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ohta, Taisuke, Taisuke Ohta, Robert Copeland, and Robert Copeland. Testing the possibility of magnetic domain imaging based on circular & linear dichroism using photoemission electron microscopy. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1760415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anders, S., T. Stammler, C. S. Bhatia, et al. Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/674744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feng, J. An Aberration Corrected Photoemission Electron Microscope at the Advanced Light Source. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/829710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!