To see the other types of publications on this topic, follow the link: Photoemission. Electron microscopy.

Journal articles on the topic 'Photoemission. Electron microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photoemission. Electron microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kang, Tai-Hee, Ki-jeong Kim, C. C. Hwang, S. Rah, C. Y. Park, and Bongsoo Kim. "PLS photoemission electron microscopy beamline." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468 (July 2001): 581–85. http://dx.doi.org/10.1016/s0168-9002(01)00417-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tinti, G., H. Marchetto, C. A. F. Vaz, et al. "The EIGER detector for low-energy electron microscopy and photoemission electron microscopy." Journal of Synchrotron Radiation 24, no. 5 (2017): 963–74. http://dx.doi.org/10.1107/s1600577517009109.

Full text
Abstract:
EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modificatio
APA, Harvard, Vancouver, ISO, and other styles
3

Giesen, Margret, Raymond J. Phaneuf, Ellen D. Williams, and Theodore L. Einstein. "Photoemission electron microscopy of Schottky contacts." Surface Science 396, no. 1-3 (1998): 411–21. http://dx.doi.org/10.1016/s0039-6028(97)00696-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keutner, Christoph, Alex von Bohlen, Ulf Berges, Philipp Espeter, Claus M. Schneider, and Carsten Westphal. "Photoemission Electron Microscopy and Scanning Electron Microscopy ofMagnetospirillum magnetotacticum’s Magnetosome Chains." Analytical Chemistry 86, no. 19 (2014): 9590–94. http://dx.doi.org/10.1021/ac502050j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Man, K. L., and M. S. Altman. "Low energy electron microscopy and photoemission electron microscopy investigation of graphene." Journal of Physics: Condensed Matter 24, no. 31 (2012): 314209. http://dx.doi.org/10.1088/0953-8984/24/31/314209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berger, Joel A., John T. Hogan, Michael J. Greco, W. Andreas Schroeder, Alan W. Nicholls, and Nigel D. Browning. "DC Photoelectron Gun Parameters for Ultrafast Electron Microscopy." Microscopy and Microanalysis 15, no. 4 (2009): 298–313. http://dx.doi.org/10.1017/s1431927609090266.

Full text
Abstract:
AbstractWe present a characterization of the performance of an ultrashort laser pulse driven DC photoelectron gun based on the thermionic emission gun design of Togawa et al. [Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). Phys Rev Spec Top-AC10, 020703]. The gun design intrinsically provides adequate optical access and accommodates the generation of ∼1 mm2 electron beams while contributing negligible divergent effects at the anode aperture. Both single-photon (with up to 20,000 electrons/pulse) and two-photon photoemission are observed from Ta and Cu(100) photocathod
APA, Harvard, Vancouver, ISO, and other styles
7

Hammond, C., A. Nichells, and N. E. Paton. "Photoemission electron microscopy of superplastic deformation processes." Metallography 20, no. 2 (1987): 199–212. http://dx.doi.org/10.1016/0026-0800(87)90029-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marx, G. K. L., P. O. Jubert, A. Bischof, and R. Allenspach. "Probing depth of threshold photoemission electron microscopy." Applied Physics Letters 83, no. 14 (2003): 2925–27. http://dx.doi.org/10.1063/1.1616651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

OHKOCHI, Takuo. "Photoemission Electron Microscopy (PEEM) on Insulating Samples." Hyomen Kagaku 34, no. 11 (2013): 586–91. http://dx.doi.org/10.1380/jsssj.34.586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Menteş, Tevfik Onur, and Andrea Locatelli. "Angle-resolved X-ray photoemission electron microscopy." Journal of Electron Spectroscopy and Related Phenomena 185, no. 10 (2012): 323–29. http://dx.doi.org/10.1016/j.elspec.2012.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Douillard, L., and F. Charra. "Photoemission electron microscopy, a tool for plasmonics." Journal of Electron Spectroscopy and Related Phenomena 189 (August 2013): 24–29. http://dx.doi.org/10.1016/j.elspec.2013.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schmidt, O., M. Bauer, C. Wiemann, et al. "Time-resolved two photon photoemission electron microscopy." Applied Physics B 74, no. 3 (2002): 223–27. http://dx.doi.org/10.1007/s003400200803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Oelsner, A., A. Krasyuk, D. Neeb, et al. "Magnetization changes visualized using photoemission electron microscopy." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 751–56. http://dx.doi.org/10.1016/j.elspec.2004.02.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

LI Yaolong, 李耀龙, 刘运全 LIU Yunquan та 龚旗煌 GONG Qihuang. "超高时空分辨光电子显微镜的研究进展(特邀)". ACTA PHOTONICA SINICA 50, № 8 (2021): 0850201. http://dx.doi.org/10.3788/gzxb20215008.0850201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nakagawa, Takeshi, Kazuya Watanabe, Yoshiyasu Matsumoto, and Toshihiko Yokoyama. "Magnetic circular dichroism photoemission electron microscopy using laser and threshold photoemission." Journal of Physics: Condensed Matter 21, no. 31 (2009): 314010. http://dx.doi.org/10.1088/0953-8984/21/31/314010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Konenkamp, Rolf, Robert C. Word, and Joseph P. S. Fitzgerald. "Photonic Processes Visualized with Electrons in Photoemission Electron Microscopy (PEEM)." Microscopy and Microanalysis 21, S3 (2015): 1419–20. http://dx.doi.org/10.1017/s1431927615007874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Griffith, O. H., D. L. Habliston, G. B. Birrell, W. P. Skoczylas, and K. K. Hedberg. "Biological photocathodes: Complexes of chlorophylls and hemes examined by photoelectron microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 1056–57. http://dx.doi.org/10.1017/s0424820100157267.

Full text
Abstract:
Chromophore binding proteins are important in cell bioenergetics. They are, however, difficult to distinguish by electron microscopy because the atomic composition and hence scattering properties are not very different from those of other proteins. Photoemission is one relatively unexplored property of chromophores that offers a solution to this problem. Essentially all biological specimens exposed to radiation of sufficiently high energy, typically in the ultraviolet region of the spectrum, emit electrons (photoelectrons). The photoelectrons are accelerated and imaged in a photoelectron micro
APA, Harvard, Vancouver, ISO, and other styles
18

Venables, J. A. "Electron microscopy in surface science." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 678–79. http://dx.doi.org/10.1017/s042482010010545x.

Full text
Abstract:
Surface science and electron microscopy are two fields of comparable size. The overlap between the two, the examination of surfaces on a microscopic scale, constitutes a small but important area of both fields. Historically, the area has grown slowly, with relatively few electron microscopy groups worldwide involved in studies of surface structure and reconstructions, small particles and surface reactions, and crystal growth. More recently, activity has intensified with substantial developments based on TEM, STEM, REM and SEM. At the same time surface science instrumentation has been developed
APA, Harvard, Vancouver, ISO, and other styles
19

El-Khoury, P. Z., P. Abellan, Y. Gong, et al. "Visualizing surface plasmons with photons, photoelectrons, and electrons." Analyst 141, no. 12 (2016): 3562–72. http://dx.doi.org/10.1039/c6an00308g.

Full text
Abstract:
Multidimensional imaging of surface plasmons via hyperspectral dark field optical microscopy, tip-enhanced Raman scattering, nonlinear photoemission electron microscopy, and electron energy loss spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
20

Peppernick, Samuel J., Alan G. Joly, Kenneth M. Beck, and Wayne P. Hess. "Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopy." Journal of Chemical Physics 137, no. 1 (2012): 014202. http://dx.doi.org/10.1063/1.4730598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nakajima, H., A. Tong-on, N. Sumano, et al. "Photoemission Spectroscopy and Photoemission Electron Microscopy Beamline at the Siam Photon Laboratory." Journal of Physics: Conference Series 425, no. 13 (2013): 132020. http://dx.doi.org/10.1088/1742-6596/425/13/132020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Könenkamp, R., Robert C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones. "5.4nm spatial resolution in biological photoemission electron microscopy." Ultramicroscopy 110, no. 7 (2010): 899–902. http://dx.doi.org/10.1016/j.ultramic.2010.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rotermund, H. H. "Surface reactions observed by photoemission electron microscopy (PEEM)." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 1 (1992): 286–87. http://dx.doi.org/10.1017/s0424820100121831.

Full text
Abstract:
Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic p
APA, Harvard, Vancouver, ISO, and other styles
24

Fecher, Gerhard H., Oliver Schmidt, Yeukuang Hwu, and Gerd Schönhense. "Multiphoton photoemission electron microscopy using femtosecond laser radiation." Journal of Electron Spectroscopy and Related Phenomena 126, no. 1-3 (2002): 77–87. http://dx.doi.org/10.1016/s0368-2048(02)00143-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sun Quan, 孙泉, 祖帅 Zu Shuai, 上野贡生 Ueno Kosei, 龚旗煌 Gong Qihuang, and 三泽弘明 Misawa Hiroaki. "Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics." Chinese Journal of Lasers 46, no. 5 (2019): 0508001. http://dx.doi.org/10.3788/cjl201946.0508001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

KOTSUGI, Masato, and Takuo OHKOCHI. "Basis and Applications of Photoemission Electron Microscopy (PEEM)." Hyomen Kagaku 37, no. 1 (2016): 3–8. http://dx.doi.org/10.1380/jsssj.37.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schönhense, G. "Imaging of magnetic structures by photoemission electron microscopy." Journal of Physics: Condensed Matter 11, no. 48 (1999): 9517–47. http://dx.doi.org/10.1088/0953-8984/11/48/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nepijko, S. A., M. Mundschau, and G. Schönhense. "Photoemission electron microscopy of neodymium-iron-boron (Nd2Fe14B)." Applied Physics A 86, no. 4 (2007): 515–19. http://dx.doi.org/10.1007/s00339-006-3803-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Patt, M., C. Wiemann, N. Weber, et al. "Bulk sensitive hard x-ray photoemission electron microscopy." Review of Scientific Instruments 85, no. 11 (2014): 113704. http://dx.doi.org/10.1063/1.4902141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kondo, Y., K. Yagi, K. Kobayashi, H. Kobayashi, and Y. Yanaka. "Construction Of UHV-REM-PEEM for Surface Studies." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (1990): 350–51. http://dx.doi.org/10.1017/s0424820100180501.

Full text
Abstract:
Recent development of ultra-high vacuum electron microscopy (UHV-EM) is very rapid. This is due to the fact that it can be applied to variety of surface science fields.There are various types of surface imaging in UHV condition; low energy electron microscopy (LEEM) [1], transmission (TEM) and reflection electron microscopy (REM) [2] using conventional transmission electron microscopes (CTEM) (including scanning TEM and REM)), scanning electron microscopy, photoemission electron microscopy (PEEM) [3] and scanning tunneling microscopy (STM including related techniques such as scanning tunneling
APA, Harvard, Vancouver, ISO, and other styles
31

Yang, Jinfeng, and Yoichi Yoshida. "Relativistic Ultrafast Electron Microscopy: Single-Shot Diffraction Imaging with Femtosecond Electron Pulses." Advances in Condensed Matter Physics 2019 (May 2, 2019): 1–6. http://dx.doi.org/10.1155/2019/9739241.

Full text
Abstract:
We report on a single-shot diffraction imaging methodology using relativistic femtosecond electron pulses generated by a radio-frequency acceleration-based photoemission gun. The electron pulses exhibit excellent characteristics, including a root-mean-square (rms) illumination convergence of 31 ± 2 μrad, a spatial coherence length of 5.6 ± 0.4 nm, and a pulse duration of approximately 100 fs with (6.3 ± 0.6) × 106 electrons per pulse at 3.1 MeV energy. These pulses facilitate high-quality diffraction images of gold single crystals with a single shot. The rms spot width of the diffracted beams
APA, Harvard, Vancouver, ISO, and other styles
32

Fukumoto, Keiki, Mohamed Boutchich, Hakim Arezki, et al. "Ultrafast electron dynamics in twisted graphene by femtosecond photoemission electron microscopy." Carbon 124 (November 2017): 49–56. http://dx.doi.org/10.1016/j.carbon.2017.08.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ng, Waiman. "Study of surfaces and interfaces by the maximum SPEM." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 66–67. http://dx.doi.org/10.1017/s0424820100168062.

Full text
Abstract:
Photoemission spectroscopy with synchrotron radiation is a well-established technique for analyzing the electronic and chemical properties of solids and surfaces. However, photoemission suffers from a major limitation in its application to heterogeneous systems, due to large probe size (100μm * 100μm). The development of a photoemission microscope with both high spatial and energy resolution that can overcome this limitation is thus of great interest, and it can provideunique and complementary information to other microscopy techniques. The project MAXIMUM is a scanning photoemission microscop
APA, Harvard, Vancouver, ISO, and other styles
34

Hammond, C., and M. A. Imam. "Photoemission Electron Microscopy Experiments with the Balzers Ke3 Metioscope." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (1990): 571. http://dx.doi.org/10.1017/s0424820100181610.

Full text
Abstract:
In the Balzers KE3 ’Metioscope’, photoelectron emission is stimulated by the action of four mercury arc U.V. lamps, the light from which is reflected onto the specimen surface from the anode plate. The specimen may be heated in a wire-wound furnace enclosure or by an electron beam. In both cases temperatures of the order of 1200°C are attainable. Surface oxidation and contamination may be removed in situ by the use of an argon ion and/or neutral particle gun. The emitted electrons are imaged using electromagnetic lenses onto a fluorescent screen which is linked to a TV camera and recorder. Hen
APA, Harvard, Vancouver, ISO, and other styles
35

Meyer zu Heringdorf, Frank-J. "The application of low energy electron microscopy and photoemission electron microscopy to organic thin films." Journal of Physics: Condensed Matter 20, no. 18 (2008): 184007. http://dx.doi.org/10.1088/0953-8984/20/18/184007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bauer, E., M. Mundschau, W. Swiech, and W. Telieps. "Surface studies by low-energy electron microscopy (LEEM) and conventional UV photoemission electron microscopy (PEEM)." Ultramicroscopy 31, no. 1 (1989): 49–57. http://dx.doi.org/10.1016/0304-3991(89)90033-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rempfer, G. F. "Resolution in photoelectron microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 458–59. http://dx.doi.org/10.1017/s0424820100086593.

Full text
Abstract:
In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a divergi
APA, Harvard, Vancouver, ISO, and other styles
38

Scholl, Andreas. "Applications of photoemission electron microscopy (PEEM) in magnetism research." Current Opinion in Solid State and Materials Science 7, no. 1 (2003): 59–66. http://dx.doi.org/10.1016/s1359-0286(03)00003-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stenmark, Theodore, R. C. Word, and R. Könenkamp. "Confined photonic mode propagation observed in photoemission electron microscopy." Ultramicroscopy 183 (December 2017): 38–42. http://dx.doi.org/10.1016/j.ultramic.2017.06.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wilhelm, Marek, Margret Giesen, Tomáš Duchoň, et al. "Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3." APL Materials 8, no. 11 (2020): 111102. http://dx.doi.org/10.1063/5.0022150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nemšák, Slavomír, Evgheni Strelcov, Tomáš Duchoň, et al. "Interfacial Electrochemistry in Liquids Probed with Photoemission Electron Microscopy." Journal of the American Chemical Society 139, no. 50 (2017): 18138–41. http://dx.doi.org/10.1021/jacs.7b07365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Word, Robert C., J. P. S. Fitzgerald, and Rolf Könenkamp. "Direct imaging of optical diffraction in photoemission electron microscopy." Applied Physics Letters 103, no. 2 (2013): 021118. http://dx.doi.org/10.1063/1.4813550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mikkelsen, A., J. Schwenke, T. Fordell, et al. "Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains." Review of Scientific Instruments 80, no. 12 (2009): 123703. http://dx.doi.org/10.1063/1.3263759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Douillard, Ludovic, Fabrice Charra, Zbigniew Korczak, et al. "Short Range Plasmon Resonators Probed by Photoemission Electron Microscopy." Nano Letters 8, no. 3 (2008): 935–40. http://dx.doi.org/10.1021/nl080053v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Peles, Dana N., and John D. Simon. "Challenges in Applying Photoemission Electron Microscopy to Biological Systems." Photochemistry and Photobiology 85, no. 1 (2009): 8–20. http://dx.doi.org/10.1111/j.1751-1097.2008.00484.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gregoratti, L., A. Barinov, E. Benfatto, et al. "48-Channel electron detector for photoemission spectroscopy and microscopy." Review of Scientific Instruments 75, no. 1 (2004): 64–68. http://dx.doi.org/10.1063/1.1630837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

NAKAGAWA, Takeshi, and Toshihiko YOKOYAMA. "Photoemission Electron Microscopy using Magnetic Circular Dichroism with Laser." Hyomen Kagaku 30, no. 6 (2009): 332–38. http://dx.doi.org/10.1380/jsssj.30.332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Lixin, Jacob P. Hoogenboom, Ben Cook, and Pieter Kruit. "Photoemission sources and beam blankers for ultrafast electron microscopy." Structural Dynamics 6, no. 5 (2019): 051501. http://dx.doi.org/10.1063/1.5117058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Peppernick, Samuel J., Alan G. Joly, Kenneth M. Beck, et al. "Photoemission electron microscopy of a plasmonic silver nanoparticle trimer." Applied Physics A 112, no. 1 (2012): 35–39. http://dx.doi.org/10.1007/s00339-012-7316-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kuhrt, Ch, and M. Harsdorff. "Photoemission and electron microscopy of small supported palladium clusters." Surface Science 245, no. 1-2 (1991): 173–79. http://dx.doi.org/10.1016/0039-6028(91)90476-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!