Academic literature on the topic 'Photography, Aerial'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photography, Aerial.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photography, Aerial"

1

Ruzgienė, Birutė. "REQUIREMENTS FOR AERIAL PHOTOGRAPHY." Geodesy and cartography 30, no. 3 (August 3, 2012): 75–79. http://dx.doi.org/10.3846/13921541.2004.9636646.

Full text
Abstract:
The photogrammetric mapping process at the first stage requires planning of aerial photography. Aerial photographs quality depends on the successfull photographic mission specified by requirements that meet not only Lithuanian needs, but also the requirements of the European Union. For such a purpose the detailed specifications for aerial photographic mission for mapping urban territories at a large scale are investigated. The aerial photography parameters and requirements for flight planning, photographic strips, overlaps, aerial camera and film are outlined. The scale of photography, flying height and method for photogrammetric mapping is foreseen as well as tolerances of photographs tilt and swings round (yaw) are presented. Digital camera based on CCD sensors and on-board GPS is greatly appreciated in present-day technologies undertaking aerial mission.
APA, Harvard, Vancouver, ISO, and other styles
2

Solokha, M. O. "Methodical approach to aerial photographs based on aerial photography." Taurian Scientific Herald 1, no. 110 (2019): 142–46. http://dx.doi.org/10.32851/2226-0099.2019.110-1.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pavlov, V. I. "Aerial photography of the water area." Geodesy and Cartography 956, no. 2 (March 20, 2020): 18–24. http://dx.doi.org/10.22389/0016-7126-2020-956-2-18-24.

Full text
Abstract:
During the development of water resources the characteristics of excitement, direction, and flow velocity, depth, points of bottom, temperature and chemical composition of water is to be taken into account. Some of these indicators are determined through the results of measuring single aerial photographs and their stereoscopic pairs. Making aerial photography (APS) of water surface on technology for topographic land survey enables obtaining only single overlapping aerial photographs, as the water surface is in constant motion. Stereoscopic pairs of aerial photographs can be obtained if photographing is performed simultaneously by two aerial cameras (AFA) with close elements of internal orientation. The author considers two technological schemes of using two AFA in aerial photography of water space
APA, Harvard, Vancouver, ISO, and other styles
4

Takahashi, Y., C. Kuhara, and H. Chikatsu. "IMAGE BLUR DETECTION METHOD BASED ON GRADIENT INFORMATION IN DIRECTIONAL STATISTICS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (August 12, 2020): 91–95. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-91-2020.

Full text
Abstract:
Abstract. Images are visually inspected for defects that affect downstream operations and qualitatively evaluated immediately after they are acquired. Therefore, there is concern that an increase in the number of images taken affects the quality and process of inspections. Among the defects qualitatively detected in visual inspections, blurring is a serious one, despite its low rate of appearance. However, the blurry images detected in the visual inspections can only be solved by the take another photograph. For this reason, it is not acceptable for any blurry images to be missed in the visual inspections. Therefore, quantitative evaluations are an issue when inspecting photographed images. In the present study, its characteristics in aerial photography were investigated and it was established that motion blur occurs in aerial photography. The motion blur is a condition in which the subject appears to have drifted. We focused on the gradient direction of the image, which is considered to be concentrated in a certain direction. The concept of directional statistics was used to statistically process the gradient direction. The evaluation values calculated from the gradient direction statistics tended to increase with the amount of blurring in the aerial photographs. An experiment was conducted to investigate whether images with blurring could be detected in a large number of aerial photographs. As a result, we were able to successfully detect blurred images that had been overlooked during the visual inspection as well as the images that had been previously detected during the visual inspection.
APA, Harvard, Vancouver, ISO, and other styles
5

Piekielek, Nathan. "A semi-automated workflow for processing historic aerial photography." Abstracts of the ICA 1 (July 15, 2019): 1. http://dx.doi.org/10.5194/ica-abs-1-299-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> Libraries, museums and archives were the original big geospatial information repositories that to this day house thousands to millions of resources containing research-quality geographic information. However, these print resources (and their digital surrogates), are not easily incorporated into the contemporary research process because they are not structured data that is required of web-mapping and geographic information system tools. Fortunately, contemporary big data tools and methods can help with the large-scale conversion of historic resources into structured datasets for mapping and spatial analysis.</p><p>Single frame historic aerial photographs captured originally on film (hereafter “photographs”), are some of the most ubiquitous and information-rich geographic information resources housed in libraries, museums and archives. Photographs authentically encoded information about past places and time-periods without the thematic focus and cartographic generalization of historic print maps. As such, they contain important information in nearly every category of base mapping (i.e. transportation networks, populated places etc.), that is useful to a broad spectrum of research projects and other applications. Photographs are also some of the most frustrating historic resources to use due to their very large map-scale (i.e. small geographic area), lack of reference information and often unknown metadata (i.e. index map, flight altitude, direction etc.).</p><p>The capture of aerial photographs in the contiguous United States (U.S.) became common in the 1920s and was formalized in government programs to systematically photograph the nation at regular time intervals beginning in the 1930s. Many of these photography programs continued until the 1990s meaning that there are approximately 70 years of “data” available for the U.S. that is currently underutilized due to inaccessibility and the challenges of converting photographs to structured data. Large collections of photographs include government (e.g. the U.S. Department of Agriculture Aerial Photography Field Office “The Vault” – over 10 million photographs), educational (e.g. the University of California Santa Barbara Library – approximately 2.5 million photographs), and an unknown number non-governmental organizations (e.g. numerous regional planning commissions and watershed conservation groups). Collectively these photography resources constitute an untapped big geospatial data resource.</p><p>U.S. government photography programs such as the National Agricultural Imagery Program continued and expanded in the digital age (i.e. post early 2000s), so that not only is there opportunity to extend spatial analyses back in time, but also to create seamless datasets that integrate with current and expected future government aerial photography campaigns. What is more, satellite imagery sensors have improved to the point that there is now overlap between satellite imagery and aerial photography in terms of many of their technical specifications (i.e. spatial resolution etc.). The remote capture of land surface imagery is expanding rapidly and with it are new opportunities to explore long-term land-change analyses that require historical datasets.</p><p>Manual methods to process photographs are well-known, but are too labour intensive to apply to entire photography collections. Academic research on methods to increase the discoverability of photographs and convert them to geospatial data at large-scale has to date been limited (although see the work of W. Karel et al.). This presentation details a semi-automated workflow to process historic aerial photographs from U.S. government sources and compares the workflow and results to existing methods and datasets. In a pilot test area of 94 photographs in the U.S. state of Pennsylvania, the workflow was found to be nearly 100-times more efficient than commonly employed alternatives while achieving greater horizontal positional accuracy. Results compared favourably to contemporary digital aerial photography data products, suggesting that they are well-suited for integration with contemporary datasets. Finally, initial results of the workflow were incorporated into several existing online discovery and sharing platforms that will be highlighted in this presentation. Early online usage statistics as well as direct interaction with users demonstrates the broad interest and high-impact of photographs and their derived products (i.e. structured geospatial data).</p>
APA, Harvard, Vancouver, ISO, and other styles
6

Eyton, J. Ronald. "Student Aerial Photography." Geocarto International 20, no. 4 (December 2005): 65–73. http://dx.doi.org/10.1080/10106040508542366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matthews, M. C., and C. R. I. Clayton. "The Use of Oblique Aerial Photography to Investigate the Extent and Sequence of Landslipping at Stag Hill, Guildford, Surrey." Geological Society, London, Engineering Geology Special Publications 2, no. 1 (1986): 309–15. http://dx.doi.org/10.1144/gsl.1986.002.01.54.

Full text
Abstract:
AbstractThe University of Surrey is situated on the northern slopes of Stag Hill, below Guildford Cathedral, which occupies the summit. During the investigation for the design of the University, it became apparent that the site was underlain by a large landslip, 500 m wide from east to west and extending 160 m from rear scarp to toe. Considerable effort was made to establish its geometry and extent (Skempton & Petley (1967), and Morgenstern & Tchalenko (1967)).In recent years it was realised that because the construction of the Cathedral extended over a long period of time, the likelihood of Stag Hill being covered by oblique aerial photography would be high. Some forty oblique aerial photographs, spanning the period 1949 to 1982, were collected and analysed together with vertical aerial photographs and topographic maps.Although the landslip is visible on vertical aerial photographs, individual elements are not easily identified. Using oblique photography, in particular that in which recognition of subdued topography has been enhanced by low sun angles, up to six phases of landslipping were identified.This paper uses this example to demonstrate the usefulness of aerial photography in site investigation and in particular the value of oblique photography, a topic which receives little attention in BS 5930:1981 considering how cost effective this tool can be.
APA, Harvard, Vancouver, ISO, and other styles
8

Jianming, Chen. "Map of the Mount Gongga Glacier: A Combination of Terrestrial and Aerial Photogrammetry." Annals of Glaciology 8 (1986): 34–36. http://dx.doi.org/10.1017/s0260305500001099.

Full text
Abstract:
For use in glaciological research, between 1982 and 1984, we succeeded in surveying and mapping the Mount Gongga Glacier, on a scale of 1:25 000, by means of a combination of terrestrial and aerial photogrammetry. This paper describes the method in detail. In the survey area, we set up an independent, triangulation network, with microwave distance measurement, and two, independent, straight-line traverses, for basic control. Control points were observed by intersection. The terrestrial, photogrammetric baselines were projected and corrected into distances on the. plane of the map. Terrestrial photography accounted for the majority of the photographs of the survey area. Surveying and mapping of planimetrie and topographic features were completed on a stereo-autograph, using plates mainly from terrestrial photogrammetry. Where these data were insufficient, they were supplemented by aerial photography, plotted on a photographic plotting instrument. Orientation points of the aerial photographs were established by terrestrial, photogrammetric analysis and located on the map by an optical, mechanical method. The practical result showed that a combination of terrestrial and aerial photogrammetry, in mapping a high, mountain, glacier area, on a large scale, is more feasible and flexible than other methods and more economical as well.
APA, Harvard, Vancouver, ISO, and other styles
9

Jianming, Chen. "Map of the Mount Gongga Glacier: A Combination of Terrestrial and Aerial Photogrammetry." Annals of Glaciology 8 (1986): 34–36. http://dx.doi.org/10.3189/s0260305500001099.

Full text
Abstract:
For use in glaciological research, between 1982 and 1984, we succeeded in surveying and mapping the Mount Gongga Glacier, on a scale of 1:25 000, by means of a combination of terrestrial and aerial photogrammetry. This paper describes the method in detail.In the survey area, we set up an independent, triangulation network, with microwave distance measurement, and two, independent, straight-line traverses, for basic control. Control points were observed by intersection. The terrestrial, photogrammetric baselines were projected and corrected into distances on the. plane of the map.Terrestrial photography accounted for the majority of the photographs of the survey area. Surveying and mapping of planimetrie and topographic features were completed on a stereo-autograph, using plates mainly from terrestrial photogrammetry. Where these data were insufficient, they were supplemented by aerial photography, plotted on a photographic plotting instrument. Orientation points of the aerial photographs were established by terrestrial, photogrammetric analysis and located on the map by an optical, mechanical method.The practical result showed that a combination of terrestrial and aerial photogrammetry, in mapping a high, mountain, glacier area, on a large scale, is more feasible and flexible than other methods and more economical as well.
APA, Harvard, Vancouver, ISO, and other styles
10

Pisetskaya, Olga, Yanina Isayeva, and Maksim Goutsaki. "Application of Unmanned Flying Vehicle for Obtaining Digital Orthofotomaps." Baltic Surveying 11 (November 20, 2019): 60–69. http://dx.doi.org/10.22616/j.balticsurveying.2019.018.

Full text
Abstract:
Nowadays, surveys using unmanned aerial vehicles is becoming popular. The resulting orthophotomap is the final product for creating digital plans and cardboard. The objectives of the study are to study the possibilities of obtaining orthophotomaps from survey materials using unmanned aerial vehicles based on the results of the experiment. The article describes various types of aerial photography. Some types of unmanned flying vehicles to conduct aerial photography for the purpose of monitoring, engineering surveys, inventory of agricultural land, and crop forecasts are considered. A description of aerial photography surveying is given on the example of the city of Dzerzhinsk, Minsk Region, which is performed taking into account the unmanned flying vehicles of GeoScan 201 and the Republican agricultural aero-geodesic unitary enterprise BelPSHAGI. A description of the GeoScan Planner software and basic pre-flight preparation is given. The stages of the preparatory work before the aerial photography, the creation of the planning and high-altitude geodetic justification, the implementation of aerial photography procedures, the steps of the aerial photograph anchorage procedure are considered. Agisoft Photoscan, which allows to get clouds of points, surfaces, 3D models and orthophotomaps using digital raster images are presented. The map of heights (DEM) of the terrain and the orthophotomap was made on the basis of a dense points cloud. According to the results of the research, a conclusion was made on the possibility of using aerial photography materials obtained using unmanned flying vehicles to get orthophotomaps of the required accuracy.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Photography, Aerial"

1

Richards, Daniel L. "Open source UAV platform development for aerial photography." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1587919.

Full text
Abstract:

Aerial photography is an important layer in Geographic Information Systems (GISs), and generally provides the base layer from which many other digital map layers are derived. Capturing these photos from a traditional full-sized airplane is a complex and expensive process. The recent development of Unmanned Aerial Vehicles (UAVs) and associated technology are providing an alternative to the traditional aerial mapping process. UAVs produced by popular commercial vendors are effective at capturing photos, but are highly expensive to acquire, and equally expensive to maintain.

This research project demonstrates the development and successful implementation of a relatively inexpensive ($2000) unmanned aerial vehicle capable of acquiring high-resolution digital aerial photography. The UAV was developed using open source technology and commercially available components. The methods outlined encompass the platform selection, component inventory, design, construction, configuration, implementation, and testing of the UAV, as well as an analysis of the photography produced by the process. This approach can be used by others to implement similar UAV projects.

APA, Harvard, Vancouver, ISO, and other styles
2

Brimicombe, A. J. "Uncertainty and fitness-for-use in handling aerial photographic interpretive data in geographical information systems." Thesis, Hong Kong : University of Hong Kong, 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B14394820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wolf, Eric B. "Low-cost large scale aerial photography and the Upland South Folk Cemetery a thesis presented to the Department of Geology and Geography in candidacy for the degree of Master of Science /." Diss., Maryville, Mo. : Northwest Missouri State University, 2006. http://www.nwmissouri.edu/library/theses/WolfEricB/index.htm.

Full text
Abstract:
Thesis (M.S.)--Northwest Missouri State University, 2006.
The full text of the thesis is included in the pdf file. Title from title screen of full text.pdf file (viewed on January 25, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Gurtner, Alex. "Investigation of fisheye lenses for small UAV aerial photography." Queensland University of Technology, 2008. http://eprints.qut.edu.au/19323/.

Full text
Abstract:
Aerial photography obtained by UAVs (Unmanned Aerial Vehicles) is an emerging market for civil applications. Small UAVs are believed to close gaps in niche markets, such as acquiring airborne image data for remote sensing purposes. Small UAVs will be able to fly at low altitudes, in dangerous environments and over long periods of time. However, the small lightweight constructions of these UAVs lead to new problems, such as higher agility leading to more susceptibility to turbulence and limitations in space and payload for sensor systems. This research investigates the use of low-cost fisheye lenses to overcome such problems which theoretically makes the airborne imaging less sensitive to turbulence. The fisheye lens has the benet of a large observation area (large field of view) and doesn't add additional weight to the aircraft, like traditional mechanical stabilizing systems. This research presents the implementation of a fisheye lens for aerial photography and mapping purposes, including theoretical background of fisheye lenses. Based on the unique feature of the distortion being a function of the viewing angle, methods used to derive the fisheye lens distortion are presented. The lens distortion is used to rectify the fisheye images before these images can be used in aerial photography. A detailed investigation into the inner orientation of the camera and inertial sensor is given, as well as the registration of airborne collected images. It was found that the attitude estimation is critical towards accurate mapping using low quality sensors. A loosely coupled EKF filter applied to the GPS and inertial sensor data estimated the attitude to an accuracy of 3-5° (1-sigma) using low-cost sensors typically found in small UAVs. However, the use of image stitching techniques may improve the outcome. On the other hand, lens distortion caused by the fisheye lens can be addressed by rectification techniques and removed to a sub-pixel level. Results of the process present image sequences gathered from a piloted aircraft demonstrating the achieved performance and potential applications towards UAVs. Further, an unforeseen issue with a vibrating part in the lens lead to the need for vibration compensation. The vibration could be estimated to ±1 pixel in 75% of the cases by applying an extended Hough transform to the fisheye images.
APA, Harvard, Vancouver, ISO, and other styles
5

Simpson, Andrew David. "DEVELOPMENT OF AN UNMANNED AERIAL VEHICLE FOR LOW-COST REMOTE SENSING AND AERIAL PHOTOGRAPHY." UKnowledge, 2003. http://uknowledge.uky.edu/gradschool_theses/191.

Full text
Abstract:
The paper describes major features of an unmanned aerial vehicle, designed undersafety and performance requirements for missions of aerial photography and remotesensing in precision agriculture. Unmanned aerial vehicles have vast potential asobservation and data gathering platforms for a wide variety of applications. The goalof the project was to develop a small, low cost, electrically powered, unmanned aerialvehicle designed in conjunction with a payload of imaging equipment to obtainremote sensing images of agricultural fields. The results indicate that this conceptwas feasible in obtaining high quality aerial images.
APA, Harvard, Vancouver, ISO, and other styles
6

Buckley, Craig. "Photomosaicing and automatic topography generation from stereo aerial photography." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knapp, Paul Aaron. "THE USE OF LARGE-SCALE AERIAL PHOTOGRAPHY FOR DETECTING CHANGES OF AN ARID RANGELAND IN SOUTHWESTERN ARIZONA." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/292059.

Full text
Abstract:
Interpretation of large-scale color infrared and color aerial photography can be a labor and cost-effective means for inventorying and monitoring rangelands while maintaining accuracy. Ground measurements of vegetation cover at Organ Pipe Cactus National Monument were taken in 1975 and 1984. Large-scale (1:1200) color and color infrared aerial photo estimates were compared to these ground measurements through regression and correlation to check photo accuracy. Relationships between photo estimates and ground measurements of total vegetation and shrub cover were strong when using either film type. Color infrared photo estimates corresponded better with ground measurements for both tree cover and cactus cover than color photo estimates. Large-scale aerial photography is also useful for determining some of the causes of vegetation change. Evidence gathered from both sets of photos suggested that vegetation change at OPCNM was largely the result of domestic livestock removal and short-term climatic fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Keith Marron. "The global-to-local search method: A systematic search procedure that uses the context of the textured layout to locate and detect low-contrast targets in aerial images." CSUSB ScholarWorks, 1993. https://scholarworks.lib.csusb.edu/etd-project/700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gifford, Eric Allan 1965. "Hough transform extraction of cartographic fiducial marks from aerial photography." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277903.

Full text
Abstract:
Cartographic compilation requires precision mensuration. The calibration of mensuration processes is based on specific fiducials. External fiducials, around the exterior frame of the image, must be precisely measured to establish the overall physical geometry. Internal fiducials are provided within the image by placement of cloth panels on the ground at locations whose position is precisely known. Both types of fiducials must be known within the pixel space of a digitized image in order for the feature extraction process to be accurate with respect to delineated features. Precise mensuration of these fiducials requires that a cartographer view the image on a display and use pointing devices, such as a mouse, to pick the exact point. For accurate fiducial location, the required manual operations can be an added time-consuming task in the feature extraction process. Interactive tools which eliminate the precise pointing action for the operator are described in this thesis. The operator is required only to "box-in" the fiducial, using a simple drawing tool, select the fiducial function, and the software of the tool returns the precise location of the fiducial.
APA, Harvard, Vancouver, ISO, and other styles
10

Gombos, Andrew David. "DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL PHOTOGRAPHY." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/75.

Full text
Abstract:
The recent growth in inexpensive laser scanning sensors has created entire fields of research aimed at processing this data. One application is determining the polygonal boundaries of roofs, as seen from an overhead view. The resulting building outlines have many commercial as well as military applications. My work in this area has created a segmentation algorithm where the descriptive features are computationally and theoretically simpler than previous methods. A support vector machine is used to segment data points using these features, and their use is not common for roof detection to date. Despite the simplicity of the feature calculations, the accuracy of our algorithm is similar to previous work. I also describe a basic polygonal extraction method, which is acceptable for basic roofs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Photography, Aerial"

1

Aerial photography. New York: Amphoto, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lloyd, Harvey. Aerial photography. New York: Amphoto, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burns, Joanne. Aerial photography. Wollongong University, N.S.W: Five Islands Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banner, Katharine. Aerial photography: Poems. Marton: Mudfog Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cottrell, Mark. Kite aerial photography. London: The Kite Store, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

E, Read Roger, ed. Manual of aerial photography. London: Focal Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Warner, W. S. Small format aerial photography. Caithness: Whittles, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Bureau of Land Management. Denver Service Center, ed. Special aerial photography specifications. Denver, Colo: U.S. Dept. of the Interior, Bureau of Land Management, Service Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graham, Ron. Manual of aerial photography. London: Focal, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

D, Kiser James, ed. Aerial photography and image interpretation. 2nd ed. Hoboken, NJ: John Wiley, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Photography, Aerial"

1

Schmidt, Dietmar, and Friedrich Kühn. "Aerial Photography." In Environmental Geology, 23–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74671-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guthrie, Richard. "Aerial Photography." In Encyclopedia of Earth Sciences Series, 8–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guthrie, Richard. "Aerial Photography." In Selective Neck Dissection for Oral Cancer, 1–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_7-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guthrie, Richard. "Aerial Photography." In Selective Neck Dissection for Oral Cancer, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-12127-7_7-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hangay, George, Severiano F. Gayubo, Marjorie A. Hoy, Marta Goula, Allen Sanborn, Wendell L. Morrill, Gerd GÄde, et al. "Aerial Photography." In Encyclopedia of Entomology, 53. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mancini, Keith, and John Sidoriak. "Aerial Photography." In Fundamentals of Forensic Photography, 129–51. New York : Routledge, 2017. | Series: Applications in scientific photography: Routledge, 2017. http://dx.doi.org/10.4324/9781315693125-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aldred, Oscar. "The Aerial Imagination." In Archaeology and Photography, 193–208. London; New York: Bloomsbury Visual Arts, 2019. |: Routledge, 2020. http://dx.doi.org/10.4324/9781003103325-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ceraudo, Giuseppe. "Aerial Photography in Archaeology." In Natural Science in Archaeology, 11–30. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01784-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hopley, David. "Aerial Photography of Coral Reefs." In Encyclopedia of Modern Coral Reefs, 13–15. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2639-2_282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gilbertson, D. D., M. Kent, and F. B. Pyatt. "Aerial photography and satellite imagery." In Practical Ecology for Geography and Biology, 176–93. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1415-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photography, Aerial"

1

Ferreira, Michel, Hugo Conceição, Ricardo Fernandes, and Ozan K. Tonguz. "Stereoscopic aerial photography." In the sixth ACM international workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1614269.1614279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sattar, Naw Safrin, Muhammad Abdullah Adnan, and Maimuna Begum Kali. "Secured aerial photography using Homomorphic Encryption." In 2017 International Conference on Networking, Systems and Security (NSysS). IEEE, 2017. http://dx.doi.org/10.1109/nsyss.2017.7885810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yurchuk, Iryna, Vladyslav Kovdrya, and Lolita Bilyanska. "Segmentation of Digital Images of Aerial Photography." In 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). IEEE, 2019. http://dx.doi.org/10.1109/apuavd47061.2019.8943841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Xinle, Zhanxin Yang, and Chao Chen. "An OFDM Transmission System for Aerial photography." In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5305836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murray, John C., Nark J. Neal, and Frederic Labrosse. "Intelligent Kite Aerial Platform for Site Photography." In 2007 IEEE International Conference on Automation Science and Engineering. IEEE, 2007. http://dx.doi.org/10.1109/coase.2007.4341813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tiziani, Hans J. "Measurement of image disturbance in aerial photography." In 8th Meeting in Israel on Optical Engineering, edited by Moshe Oron, Itzhak Shladov, and Yitzhak Weissman. SPIE, 1993. http://dx.doi.org/10.1117/12.150990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knowles, James, James J. Pearson, Brian Ringer, and Joan B. Lurie. "Model-based object recognition in aerial photography." In Interdisciplinary Computer Vision: Applications and Changing Needs--22nd AIPR Workshop, edited by J. Michael Selander. SPIE, 1994. http://dx.doi.org/10.1117/12.169474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shi, Lijuan, Yuanyuan Sun, Jian Zhao, Shuai Han, Jingxiao Bi, and Wenhua Dong. "3D Modeling Based on UAV Aerial Photography." In 2020 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2020. http://dx.doi.org/10.1109/icvrv51359.2020.00065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dilich, Michael A., and John M. Goebelbecker. "Accident Investigation and Reconstruction Mapping with Aerial Photography." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Ying-cheng, Dong-mei Ye, Xiao-bo Ding, Chang-sheng Teng, Guang-hui Wang, and Tuan-hao Li. "UAV Aerial Photography Technology in Island Topographic Mapping." In 2011 International Symposium on Image and Data Fusion (ISIDF). IEEE, 2011. http://dx.doi.org/10.1109/isidf.2011.6024228.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photography, Aerial"

1

DeRaps, M. R., and N. E. M. Kinsman. Spatially referenced oblique aerial photography of the Golovin shoreline, July 2012. Alaska Division of Geological & Geophysical Surveys, October 2012. http://dx.doi.org/10.14509/24465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DeRaps, M. R., and N. E. M. Kinsman. Spatially referenced oblique aerial photography of the Eastern Norton Sound shoreline, July 2011. Alaska Division of Geological & Geophysical Surveys, February 2012. http://dx.doi.org/10.14509/23143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lannom, Keith B., David L. Evans, and Zhiliang Zhu. Comparison of AVHRR classification and aerial photography interpretation for estimation of forest area. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1995. http://dx.doi.org/10.2737/so-rp-292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Christel, L. M. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/658133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: dune. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: esker. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: moraine. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: reef. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: pingo. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Provencher, L., and J. M. Dubois. Interpretation guide of natural geographic features from ETM+ Landsat imagery and aerial photography: intermittent water. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/314953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography