Academic literature on the topic 'Photon emission'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photon emission.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photon emission"
Rivera, Nicholas, Gilles Rosolen, John D. Joannopoulos, Ido Kaminer, and Marin Soljačić. "Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons." Proceedings of the National Academy of Sciences 114, no. 52 (December 12, 2017): 13607–12. http://dx.doi.org/10.1073/pnas.1713538114.
Full textMohammed Ahmed, Elaf, Hadi J. M. Al-Agealy, and Nada Farhan Kadhim. "Theoretical Calculation of Photon Emission from Quark-Antiquark Annihilation Using QCD Theory." Ibn AL-Haitham Journal For Pure and Applied Sciences 35, no. 4 (October 20, 2022): 37–44. http://dx.doi.org/10.30526/35.4.2879.
Full textMizuno, Y., and T. Mizuno. "Photon emission accompanying deformation and fracture of ice." Canadian Journal of Physics 81, no. 1-2 (January 1, 2003): 71–80. http://dx.doi.org/10.1139/p03-012.
Full textDovlatova, Alla, and Dmitri Yerchuck. "Quantum Field Theory of Dynamics of Spectroscopic Transitions by Strong Dipole-Photon and Dipole-Phonon Coupling." ISRN Optics 2012 (December 12, 2012): 1–10. http://dx.doi.org/10.5402/2012/390749.
Full textKontos, Antonios, and Rainer Weiss. "Photon emission spectrum of ion pumps." Review of Scientific Instruments 94, no. 3 (March 1, 2023): 034503. http://dx.doi.org/10.1063/5.0138917.
Full textMcLaughlin, Joseph Biagio, Giacomo Gallina, Fabrice Retière, Austin De St. Croix, Pietro Giampa, Mahsa Mahtab, Peter Margetak, et al. "Characterisation of SiPM Photon Emission in the Dark." Sensors 21, no. 17 (September 4, 2021): 5947. http://dx.doi.org/10.3390/s21175947.
Full textAKSENOV, A. G., R. RUFFINI, I. A. SIUTSOU, and G. V. VERESHCHAGIN. "DYNAMICS AND EMISSION OF MILDLY RELATIVISTIC PLASMA." International Journal of Modern Physics: Conference Series 12 (January 2012): 1–9. http://dx.doi.org/10.1142/s2010194512006204.
Full textYang, Ming, Shun An Chen, Qian Ru Lin, and Tao Pang. "Temperature Sensing Assists the Understanding of Er3+ Concentration Dependent Anti-Stokes Luminescence in NaYF4:Er3+/Yb3+ Nanophosphors." Materials Science Forum 1003 (July 2020): 241–46. http://dx.doi.org/10.4028/www.scientific.net/msf.1003.241.
Full textChef, Samuel, Chung Tah Chua, and Chee Lip Gan. "Machine Learning for Time-Resolved Emission: Image Resolution Enhancement." EDFA Technical Articles 23, no. 3 (August 1, 2021): 24–31. http://dx.doi.org/10.31399/asm.edfa.2021-3.p024.
Full textMelrose, D. B. "Induced photon decay and photon-beam-induced Langmuir turbulence." Journal of Plasma Physics 51, no. 1 (February 1994): 13–27. http://dx.doi.org/10.1017/s0022377800017360.
Full textDissertations / Theses on the topic "Photon emission"
Heinze, Dirk, Artur Zrenner, and Stefan Schumacher. "Polarization-entangled twin photons from two-photon quantum-dot emission." AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/624438.
Full textThompson, Ruth Marie. "Single photon and photon pair emission from a quantum dot." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619579.
Full textHewitt, Tanya A. "Pinhole single photon emission computed tomography." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0002/MQ43359.pdf.
Full textAl-Azmi, Darwish. "Simultaneous positron and single photon emission tomography." Thesis, University of Surrey, 1995. http://epubs.surrey.ac.uk/770250/.
Full textVaras, Jaime Armando. "Spectral unfolding of radiotherapy photon beams." Thesis, The University of Sydney, 2008. https://hdl.handle.net/2123/28131.
Full textTan, T. S. "Light emission from a scanning tunnelling microscope." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361306.
Full textTajuddin, A. A. B. "Error reduction in quantitative single photon emission tomography." Thesis, University of Surrey, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371988.
Full textSchaeverbeke, Quentin. "Photon emission and quantum transport in nanoplasmonic cavities." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0097.
Full textThe study of light–matter interaction has drawn through the years more and more interest. With the improvement of the techniques used for building electromagnetic cavities, it is now possible to couple cavities with nanocircuits merging the fields of quantum optics and nanoelectronics.Not only that, but some experiments also reported the possibility to use a scanning tunneling microscope as a plasmonic cavity coupled with electronic transport. In this thesis a theoretical framework is proposed, based on mesoscopic quantum electrodynamics, for studying the coupling between electronic transport in a molecular junction and the electromagnetic field of a cavity. This thesis focuses on the sequential tunneling regime for the electrons and use density matrix approach. This allows to derive the master equation as well as a computational scheme to compute electronic current and the photon statistic when it is not possible to obtain analytical results. First, a single–level model for the molecule in the junction is studied. Indeed the electronic current induces a fluctuation of the charge on the molecule that couples with the electromagnetic field in the cavity. The investigations on this system are done in the experimentally relevant limit of large damping rate κ for the cavity mode and arbitrary strong light–matter coupling strength. This model shows the equivalence between the electron–photon coupling for a single level and the electron– phonon coupling that has long been studied in nanoelectronics known as the Franck–Condon principle. The current–voltage characteristics show steps, each separated by the energy of a photon, as the electron tunneling dissipate some energy in the cavity mode. In this work a formula has been derived for the electronic current taking into account the damping of the cavity. This allows to show that the width of the current’s steps are controlled by κ rather than the temperature. The single-level junction shows interesting light–emission regimes. At large bias voltage this theory predicts strong photon bunching of the order κ/Γ where Γ is the electronic tunneling rate. However, at the first inelastic threshold the theory predicts current–driven non–classical light emission from the single–level junction. Finally the investigation of the effect of a strong external drive of the cavity on the electronic current shows a quantization of the current that is linked to the Franck–Condon effect. Finally the theory is applied to a double–level model for the molecular junction inspired by quantum optics. In this scenario, the cavity mode couples to the electronic transition between the two states of the molecule. The effect of the charge fluctuations for each single electronic level is neglected. Therefore the coupling is a dipolar coupling in this case. The focus is mainly on the weak coupling regime. The electronic current shows the Rabi splitting due to the hybridization of the cavity mode and the molecule. Electronic tunneling can occur into these hybridized states and is responsible for light emission in the cavity in a iii single tunneling process. Light antibunching is seen in the weak coupling regime since our model predicts that only single photon emission is possible during a tunneling event in this case. Though the intermediate coupling regime is only briefly treated, the strong coupling regime is shown to be similar to two independent single level
El estudio de las interacciones entre luz y materia ha atraído un interés creciente a lo largo de los años. La mejora de las técnicas de fabricación de las cavidades electromagnéticas permite hoy conjugar las cavidades con nanocircuitos, combinando así los campos de la óptica cuántica y de la nanoelectrónica. Se añade a eso la posibilidad de usar un microscopio con efecto túnel a modo de cavidad plasmónica combinada con el transporte electrónico que fue demostrado en numerosas experiencias. Esa tesis propone un cuadro teórico basado en la electrodinámica mesoscópica, permitiendo el estudio de la combinación del transporte electrónico dentro de una unión molecular con el campo electromagnético de una cavidad. El foco se centra en el régimen túnel secuencial de los electrones, a cual está apto el uso de la matriz densidad para los cálculos. Ese régimen permite establecer ecuaciones claves que rigen el desarrollo temporal de la matriz densidad, tal como un esquema de cálculo numérico de la corriente electrónica y de la estadística de los fotones en la cavidad cuando no es posible obtener un resultado analítico. Primero se estudia un modelo de un solo nivel electrónico para la molécula. En efecto, la existencia de una corriente electrónica significa que la carga en la molécula fluctúa y esa fluctuación se combina con el campo electromagnético de la cavidad. El estudio de ese sistema se hace en el limite, experimentalmente pertinente, del ratio alto de la amortiguación κ del modo de la cavidad y del acoplo luz–materia arbitrariamente alto. Ese modelo demuestra la equivalencia del acoplo electrón– fotón para un nivel electrónico y el acoplo electrón–fonón que se ha estudiado desde hace mucho tiempo en el campo de la nanoelectrónica bajo el nombre del principio de Franck–Condon. La característica corriente– tensión del circuito hace aparecer una evolución de escalones, cada uno separado por la energía de un fotón. Eso corresponde a una disipación de energía por parte de los electrones al modo de la cavidad durante el proceso de transporte. En ese trabajo se derivó una ecuación para la corriente electrónica que toma en cuenta el efecto de la amortiguación de la cavidad. Esto demuestra que la anchura de los saltos en la corriente está controlada por κ más que por la temperatura. El modelo de un solo nivel muestra también regímenes inesperados de emisión de luz. En el límite de voltaje alto entre los electrodos de la unión molecular, la teoría predice una agrupación («bunching») de los fotones emitidos dentro de la cavidad. La correlación entre dos fotones emitidos alcanza un valor del orden de κ/Γ donde Γ es el ratio de tunelamiento de los electrones. Sin embargo, en el primer umbral de transferencia inelástica esa teoría iv predice una emisión de luz no-clásica provocada por la corriente electrónica. Por fin, el estudio del impacto de una fuerte excitación externa del modo de la cavidad muestra también una cuantización de la corriente relacionada al efecto Franck–Condon. Finalmente, la teoría desarrollada en esta tesis está aplicada también a una unión molecular de dos niveles electrónicos inspirada de la óptica cuántica. En ese escenario el modo de la cavidad está acoplado con la transición electrónica entre dos orbitales moleculares. El efecto de fluctuaciones de carga en cada orbital no se tiene en cuenta. Entonces en ese marco el acoplo es solo dipolar. Se centra la atención principalmente en el régimen del acoplo débil. La corriente electrónica muestra la huella de oscilaciones de Rabi como resultado de la hibridación del modo de la cavidad con la molécula. El transporte de electrones se puede ocurrir mediante estos estados híbridos. Entonces el traslado de un único electrón es responsable de la emisión de un fotón en la cavidad. Se observa el desagrupamiento («anti-bunching») de la luz emitida
Linsefors, Linda. "Multi-photon emission in QED with strong background fields." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56265.
Full textDownes, A. R. "Photon emission from metals in the Scanning Tunnelling Microscope." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598626.
Full textBooks on the topic "Photon emission"
Grimes, Dale M. Photon creation - annihilation: Continuum electromagnetic theory. Singapore: World Scientific, 2012.
Find full textJ, English Robert. SPECT: Single-photon emission computed tomography : a primer. New York, NY: Society of Nuclear Medicine, 1986.
Find full text1949-, Brown Susan E., ed. SPECT: Single-photon emission computed tomography : a primer. 2nd ed. New York, NY: Society of Nuclear Medicine, 1990.
Find full textNilsen, Heidi. Imaging photon emission spectroscopy of food material. Aachen: Shaker, 1996.
Find full textRussia) Alexander Gurwitsch Conference (2nd 1999 Moscow. Biophotonics and coherent systems: Proceedings of the 2nd Alexander Gurwitsch Conference, and additional contributions. Moscow: Moscow University Press, 2000.
Find full textVolodyaev, Ilya, Eduard van Wijk, Michal Cifra, and Yury A. Vladimirov, eds. Ultra-Weak Photon Emission from Biological Systems. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-39078-4.
Full textH, Cox Peter, and Pillay M, eds. The clinical applications of SPET. Dordrecht: Kluwer Academic Publishers, 1995.
Find full text1962-, Wernick Miles N., and Aarsvold John N, eds. Emission tomography: The fundamentals of PET and SPECT. San Diego: Elsevier Academic Press, 2004.
Find full textChim, Wai Kin. Semiconductor device and failue analysis: Using photon emission microscopy. Chichester, [England]: Wiley, 2000.
Find full textUnited States. National Aeronautics and Space Administration., ed. X-ray inverse Compton emission from the radio halo of M87: A thesis in astronomy. [University Park, Pa.]: Pennsylvania State University, The Graduate School, Dept. of Astronomy, 1985.
Find full textBook chapters on the topic "Photon emission"
Volodyaev, Ilya, and Yury A. Vladimirov. "Physics of Photon Emission." In Ultra-Weak Photon Emission from Biological Systems, 61–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-39078-4_5.
Full textGeaney, D. P. "Single Photon Emission Tomography." In Dementia, 437–56. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-6805-6_25.
Full textHarmon, David, Sumayya J. Almarzouqi, Michael L. Morgan, and Andrew G. Lee. "Single-Photon Emission Computed Tomography." In Encyclopedia of Ophthalmology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35951-4_1282-1.
Full textSaha, Gopal B. "Single Photon Emission Computed Tomography." In Physics and Radiobiology of Nuclear Medicine, 153–81. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-36281-6_12.
Full textZasler, Nathan D., and Paul E. Kaplan. "Single Photon Emission Computed Tomography." In Encyclopedia of Clinical Neuropsychology, 3189–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_72.
Full textKarnabi, Eddy. "Single Photon Emission Computed Tomography." In Cardiology Procedures, 71–79. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7290-1_8.
Full textMorgan, Michael M., MacDonald J. Christie, Luis De Lecea, Jason C. G. Halford, Josee E. Leysen, Warren H. Meck, Catalin V. Buhusi, et al. "Single Photon Emission Computed Tomography." In Encyclopedia of Psychopharmacology, 1238. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3573.
Full textMorgan, Michael M., MacDonald J. Christie, Luis De Lecea, Jason C. G. Halford, Josee E. Leysen, Warren H. Meck, Catalin V. Buhusi, et al. "Single Photon Emission Tomography (SPET)." In Encyclopedia of Psychopharmacology, 1238. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3574.
Full textZasler, Nathan D., and Paul E. Kaplan. "Single Photon Emission Computed Tomography." In Encyclopedia of Clinical Neuropsychology, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_72-2.
Full textMurashita, Tooru. "STM-Induced Photon Emission Spectroscopy." In Roadmap of Scanning Probe Microscopy, 63–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34315-8_8.
Full textConference papers on the topic "Photon emission"
Desplats, Romain, Alban Eral, Felix Beaudoin, Philippe Perdu, Alain Chion, Ketan Shah, and Ted Lundquist. "IC Diagnostic with Time Resolved Photon Emission and CAD Auto-Channeling." In ISTFA 2003. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.istfa2003p0045.
Full textJørgensen, Mads A., Ehsan Amooghorban, Devashish Pandey, Sanshui Xiao, Nicolas Stenger, and Martijn Wubs. "Collective Photon Emission and Photon Propagation in Layered Photonic Environments." In 2023 17th European Conference on Antennas and Propagation (EuCAP). IEEE, 2023. http://dx.doi.org/10.23919/eucap57121.2023.10133534.
Full textSong, Zhigang, Franco Stellari, and Phong Tran. "Photon Emission Intensity Analysis for Leakage Source Identification." In ISTFA 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.istfa2023p0151.
Full textIsakov, D. V., B. W. M. Tan, J. C. H. Phang, Y. C. Yeo, A. A. B. Tio, Y. Zhang, T. Geinzer, and L. J. Balk. "Applications of Scanning Near-Field Photon Emission Microscopy." In ISTFA 2008. ASM International, 2008. http://dx.doi.org/10.31399/asm.cp.istfa2008p0025.
Full textStellari, Franco, Ernest Y. Wu, Takashi Ando, Martin M. Frank, and Peilin Song. "Photon Emission Microscopy of HfO2 ReRAM Cells." In ISTFA 2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.istfa2021p0115.
Full textWang, L. J., X. Y. Zou, and L. Mandel. "Direct measurement of stimulated emission in two-photon downconversion." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.ml1.
Full textAddepalli, Lavakumar, and P. K. Pathak. "Multi-photon Lasing in the Incoherently Driven Two Quantum Dots-Cavity System." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jm7a.117.
Full textYorulmaz, S. C., M. P. van Exter, and M. J. A. de Dood. "Four-Photon Stimulated Emission." In Quantum Information and Measurement. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qw4a.3.
Full textKim, Kyu Young, Christopher J. K. Richardson, Edo Waks, and Je-Hyung Kim. "Temporal mode shaping of single photons from a solid-state quantum emitter." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jtu3a.4.
Full textCarmichael, Howard J. "Antibunched light source using cavity-enhanced emission." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mm5.
Full textReports on the topic "Photon emission"
Asenath-Smith, Emily, Emma Ambrogi, Lee Moores, Stephen Newman, and Jonathon Brame. Leveraging chemical actinometry and optical radiometry to reduce uncertainty in photochemical research. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42080.
Full textSarid, D., Ting Chen, S. Howells, P. Pax, and M. Gallagher. Study of Photon Emission from Microstructures Using Scanning Tunneling Microscopy. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250780.
Full textJaszczak, R. SPECT (single photon emission computed tomography) assay of radiolabeled monoclonal antibodies. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7100325.
Full textShields, John Michael. The Search for the Emission of a CP-Violating E1 Photon in the KL → π+π-γ Decay. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/875573.
Full textHassanzadeh, Sara, Sina Neshat, Afshin Heidari, and Masoud Moslehi. Myocardial Perfusion Imaging in the Era of COVID-19. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0063.
Full textSabri, Mahshad, Yasaman Hosseini, and Roya Sani. The Additive Prognostic Value of Coronary Artery Calcium Scoring and Single-Photon Emission Computed Tomography (SPECT) on Major Adverse Cardiac Events (MACE): A Systematic Review and Meta-analysis PROTOCOL. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0073.
Full textNorris, David J., Andreas Stein, and Steven M. George. Modification of Thermal Emission via Metallic Photonic Crystals. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046967.
Full textPeng, Lili. Absorption and emission properties of photonic crystals and metamaterials. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/972076.
Full textHanna, C. B., E. S. Hellman, and R. B. Laughlin. Mechanism of current modulation by optic phonon emission in heterojunction tunneling experiments. Office of Scientific and Technical Information (OSTI), August 1985. http://dx.doi.org/10.2172/5112878.
Full textDrummond, J. L., A. D. Steinberg, and A. R. Krauss. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/510589.
Full text