To see the other types of publications on this topic, follow the link: Photon-recycling.

Journal articles on the topic 'Photon-recycling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photon-recycling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Raja, Waseem, Michele De Bastiani, Thomas G. Allen, Erkan Aydin, Arsalan Razzaq, Atteq ur Rehman, Esma Ugur, et al. "Photon recycling in perovskite solar cells and its impact on device design." Nanophotonics 10, no. 8 (June 1, 2020): 2023–42. http://dx.doi.org/10.1515/nanoph-2021-0067.

Full text
Abstract:
Abstract Metal halide perovskites have emerged in recent years as promising photovoltaic materials due to their excellent optical and electrical properties, enabling perovskite solar cells (PSCs) with certified power conversion efficiencies (PCEs) greater than 25%. Provided radiative recombination is the dominant recombination mechanism, photon recycling – the process of reabsorption (and re-emission) of photons that result from radiative recombination – can be utilized to further enhance the PCE toward the Shockley–Queisser (S-Q) theoretical limit. Geometrical optics can be exploited for the intentional trapping of such re-emitted photons within the device, to enhance the PCE. However, this scheme reaches its fundamental diffraction limits at the submicron scale. Therefore, introducing photonic nanostructures offer attractive solutions to manipulate and trap light at the nanoscale via light coupling into guided modes, as well as localized surface plasmon and surface plasmon polariton modes. This review focuses on light-trapping schemes for efficient photon recycling in PSCs. First, we summarize the working principles of photon recycling, which is followed by a review of essential requirements to make this process efficient. We then survey photon recycling in state-of-the-art PSCs and propose design strategies to invoke light-trapping to effectively exploit photon recycling in PSCs. Finally, we formulate a future outlook and discuss new research directions in the context of photon recycling.
APA, Harvard, Vancouver, ISO, and other styles
2

Luryi, Serge, and Arsen V. Subashiev. "Semiconductor scintillator based on photon recycling." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 652, no. 1 (October 2011): 292–94. http://dx.doi.org/10.1016/j.nima.2011.01.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martı́, A., J. L. Balenzategui, and R. F. Reyna. "Photon recycling and Shockley’s diode equation." Journal of Applied Physics 82, no. 8 (October 15, 1997): 4067–75. http://dx.doi.org/10.1063/1.365717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Kuan-Chen, and Shun-Tung Yen. "Photon recycling effect on electroluminescent refrigeration." Journal of Applied Physics 111, no. 1 (January 2012): 014511. http://dx.doi.org/10.1063/1.3676249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lester, S. D., T. S. Kim, and B. G. Streetman. "Evidence for photon recycling in InP." Applied Physics Letters 52, no. 6 (February 8, 1988): 474–76. http://dx.doi.org/10.1063/1.99448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Savage, Neil. "Photon recycling breaks solar power record." IEEE Spectrum 48, no. 8 (August 2011): 16. http://dx.doi.org/10.1109/mspec.2011.5960150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Yunlu, Elizabeth M. Tennyson, Jehyung Kim, Sabyasachi Barik, Joseph Murray, Edo Waks, Marina S. Leite, and Jeremy N. Munday. "Tailored Photon Recycling: Active Control of Photon Recycling for Tunable Optoelectronic Materials (Advanced Optical Materials 7/2018)." Advanced Optical Materials 6, no. 7 (April 2018): 1870026. http://dx.doi.org/10.1002/adom.201870026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Velmre, Enn, Andres Udal, and Mihhail Klopov. "Modeling of Photon Recycling in GaN-Devices." Materials Science Forum 483-485 (May 2005): 1039–42. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.1039.

Full text
Abstract:
The strength of recombination radiation reabsorption in GaN is discussed. For material comparisons a distance-dependent radiative recombination transfer function F(u) is introduced. In spite of high absorption rates of GaN, calculations predict ca. one order of magnitude higher photon recycling efficiency in GaN than in GaAs. Simulations of 2H-GaN p −i −n structures predict appearance of S-shaped forward I/V characteristics due to the generation of extra carriers in the base center. The study of GaN bipolar transistors shows that the radiative recombination will reduce the carrier lifetimes in the base and thereby restrict essentially the achievable current gains.
APA, Harvard, Vancouver, ISO, and other styles
9

Cho, Seok Ho, Sung-Min Lee, and Kyung Cheol Choi. "Improved efficiency of polymer solar cells by plasmonically enhanced photon recycling." Sustainable Energy & Fuels 3, no. 10 (2019): 2597–603. http://dx.doi.org/10.1039/c9se00215d.

Full text
Abstract:
A simple route to enhance the efficiency of polymer solar cells is presented by exploiting plasmonically assisted photon recycling. Embedded gold nanorods promote the photon radiation from excitons, and hence improve the effective diffusion length of excitons.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, J. B., S. R. Johnson, D. Ding, S. Q. Yu, and Y. H. Zhang. "Influence of photon recycling on semiconductor luminescence refrigeration." Journal of Applied Physics 100, no. 4 (August 15, 2006): 043502. http://dx.doi.org/10.1063/1.2219323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Yong-Sung, Shawn-Yu Lin, Allan S. P. Chang, Jae-Hwang Lee, and Kai-Ming Ho. "Analysis of photon recycling using metallic photonic crystal." Journal of Applied Physics 102, no. 6 (September 15, 2007): 063107. http://dx.doi.org/10.1063/1.2779271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pazos-Outon, L. M., M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, et al. "Photon recycling in lead iodide perovskite solar cells." Science 351, no. 6280 (March 24, 2016): 1430–33. http://dx.doi.org/10.1126/science.aaf1168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gigase, Yves B., Christoph S. Harder, Morris P. Kesler, Heinz P. Meier, and Bart Van Zeghbroeck. "Threshold reduction through photon recycling in semiconductor lasers." Applied Physics Letters 57, no. 13 (September 24, 1990): 1310–12. http://dx.doi.org/10.1063/1.103467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dupont, E., H. C. Liu, M. Buchanan, S. Chiu, and M. Gao. "Efficient GaAs light-emitting diodes by photon recycling." Applied Physics Letters 76, no. 1 (January 3, 2000): 4–6. http://dx.doi.org/10.1063/1.125718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Badescu, Viorel, and Peter T. Landsberg. "Influence of photon recycling on solar cell efficiencies." Semiconductor Science and Technology 12, no. 11 (November 1, 1997): 1491–97. http://dx.doi.org/10.1088/0268-1242/12/11/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Enders, P. "Photon Recycling in Double Heterostructures. III. Variational Calculations." physica status solidi (b) 141, no. 1 (May 1, 1987): 317–23. http://dx.doi.org/10.1002/pssb.2221410131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rafat, N. H., A. M. Abdel Haleem, and S. E. D. Habib. "Photon recycling in the graded bandgap solar cell." Progress in Photovoltaics: Research and Applications 14, no. 4 (2006): 313–20. http://dx.doi.org/10.1002/pip.677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bradshaw, J. L., R. P. Devaty, W. J. Choyke, and R. L. Messham. "Below‐band‐gap photon recycling in AlxGa1−xAs." Applied Physics Letters 55, no. 2 (July 10, 1989): 165–67. http://dx.doi.org/10.1063/1.102131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tsutsui, Naoaki, Irina Khmyrova, Victor Ryzhii, and Tetsuhiko Ikegami. "Effect of Photon Recycling in Pixelless Imaging Device." Japanese Journal of Applied Physics 39, Part 1, No. 9A (September 15, 2000): 5080–82. http://dx.doi.org/10.1143/jjap.39.5080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Numai, Takahiro. "Analysis of Photon Recycling in Semiconductor Ring Lasers." Japanese Journal of Applied Physics 39, Part 1, No. 12A (December 15, 2000): 6535–38. http://dx.doi.org/10.1143/jjap.39.6535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Durbin, S. M., and J. L. Gray. "Numerical modeling of photon recycling in solar cells." IEEE Transactions on Electron Devices 41, no. 2 (1994): 239–45. http://dx.doi.org/10.1109/16.277372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barth, C. J., C. C. Chu, and A. J. H. Donné. "Photon recycling system for multiposition tangential Thomson scattering." Review of Scientific Instruments 66, no. 1 (January 1995): 501–3. http://dx.doi.org/10.1063/1.1146330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yang, Zhenhai, Weichuang Yang, Xi Yang, J. C. Greer, Jiang Sheng, Baojie Yan, and Jichun Ye. "Device physics of back-contact perovskite solar cells." Energy & Environmental Science 13, no. 6 (2020): 1753–65. http://dx.doi.org/10.1039/c9ee04203b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Park, Byoungchoo, Yoon Ho Huh, Sang Hun Lee, and Young Baek Kim. "Linearly-polarized White-light-emitting OLEDs Using Photon Recycling." Journal of the Korean Physical Society 59, no. 2 (August 12, 2011): 341–45. http://dx.doi.org/10.3938/jkps.59.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Parrott, J. E. "Radiative recombination and photon recycling in photovoltaic solar cells." Solar Energy Materials and Solar Cells 30, no. 3 (August 1993): 221–31. http://dx.doi.org/10.1016/0927-0248(93)90142-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Reuter, Herbert, and Heinz Schmitt. "On the efficiency of photon recycling in solar cells." Solar Energy Materials and Solar Cells 33, no. 3 (July 1994): 369–77. http://dx.doi.org/10.1016/0927-0248(94)90238-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Braun, Avi, Eugene A. Katz, Daniel Feuermann, Brendan M. Kayes, and Jeffrey M. Gordon. "Photovoltaic performance enhancement by external recycling of photon emission." Energy & Environmental Science 6, no. 5 (2013): 1499. http://dx.doi.org/10.1039/c3ee40377g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ahrenkiel, R. K., B. M. Keyes, G. B. Lush, M. R. Melloch, M. S. Lundstrom, and H. F. MacMillan. "Minority‐carrier lifetime and photon recycling in n‐GaAs." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 4 (July 1992): 990–95. http://dx.doi.org/10.1116/1.577892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Létay, G., M. Hermle, and A. W. Bett. "Simulating single-junction GaAs solar cells including photon recycling." Progress in Photovoltaics: Research and Applications 14, no. 8 (2006): 683–96. http://dx.doi.org/10.1002/pip.699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xu, Yunlu, Elizabeth M. Tennyson, Jehyung Kim, Sabyasachi Barik, Joseph Murray, Edo Waks, Marina S. Leite, and Jeremy N. Munday. "Active Control of Photon Recycling for Tunable Optoelectronic Materials." Advanced Optical Materials 6, no. 7 (January 25, 2018): 1701323. http://dx.doi.org/10.1002/adom.201701323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ahrenkiel, R. K., D. J. Dunlavy, Brian Keyes, S. M. Vernon, T. M. Dixon, S. P. Tobin, K. L. Miller, and R. E. Hayes. "Ultralong minority‐carrier lifetime epitaxial GaAs by photon recycling." Applied Physics Letters 55, no. 11 (September 11, 1989): 1088–90. http://dx.doi.org/10.1063/1.101713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Walker, Alexandre W., Oliver Hohn, Daniel Neves Micha, Benedikt Blasi, Andreas W. Bett, and Frank Dimroth. "Impact of Photon Recycling on GaAs Solar Cell Designs." IEEE Journal of Photovoltaics 5, no. 6 (November 2015): 1636–45. http://dx.doi.org/10.1109/jphotov.2015.2479463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Badescu, V., and P. T. Landsberg. "Theory of some effects of photon recycling in semiconductors." Semiconductor Science and Technology 8, no. 7 (July 1, 1993): 1267–76. http://dx.doi.org/10.1088/0268-1242/8/7/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Parks, Joseph W., Kevin F. Brennan, and Arlynn W. Smith. "Numerical Examination of Photon Recycling as an Explanation of Observed Carrier Lifetime in Direct Bandgap Materials." VLSI Design 8, no. 1-4 (January 1, 1998): 153–57. http://dx.doi.org/10.1155/1998/16476.

Full text
Abstract:
Photon recycling is examined as an explanation for the observed large carrier lifetimes in an InP/InGaAs photodiode. This effect extends the effective carrier lifetime within a device by re-absorbing a fraction of the photons generated through radiative band-toband recombination events. In order to predict the behavior of this carrier generation, photon recycling has been added to our two-dimensional macroscopic device simulator, STEBS-2D. A ray-tracing preprocessing step is used to map all of the possible trajectories and absorption of various wavelengths of emitted light from each originating node within the device. The macroscopic simulator uses these data to determine the spatial location of the re-absorbed radiation within the geometry of the device. By incorporating the ray tracer results with the total quantity and spectral content of recombined carriers at each node within the simulation, the recycled generation rate can be obtained. A practical application of this model is presented where the effects of photon recycling are used as a possible explanation of the discrepancy between the theoretically predicted and experimentally observed radiative recombination rate in a double heterostructure photodetector.
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Seungmin, Kwang Choi, Chang Ha Min, Mun Young Woo, and Jun Hong Noh. "Photon recycling in halide perovskite solar cells for higher efficiencies." MRS Bulletin 45, no. 6 (June 2020): 439–48. http://dx.doi.org/10.1557/mrs.2020.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nanz, Stefan, Raphael Schmager, Muluneh G. Abebe, Christian Willig, Andreas Wickberg, Aimi Abass, Guillaume Gomard, Martin Wegener, Ulrich W. Paetzold, and Carsten Rockstuhl. "Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications." APL Photonics 4, no. 7 (July 2019): 076104. http://dx.doi.org/10.1063/1.5094579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nagano, Koji, Antonio Perreca, Koji Arai, and Rana X. Adhikari. "External quantum efficiency enhancement by photon recycling with backscatter evasion." Applied Optics 57, no. 13 (April 23, 2018): 3372. http://dx.doi.org/10.1364/ao.57.003372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lan, Dongchen, and Martin A. Green. "Ideal solar cell equation in the presence of photon recycling." Journal of Applied Physics 116, no. 17 (November 7, 2014): 174511. http://dx.doi.org/10.1063/1.4900997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Balenzategui, J. L., and A. Martí. "Detailed modelling of photon recycling: application to GaAs solar cells." Solar Energy Materials and Solar Cells 90, no. 7-8 (May 2006): 1068–88. http://dx.doi.org/10.1016/j.solmat.2005.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aad, Roy, Christophe Couteau, Sylvain Blaize, Evelyne Chastaing, Françoise Soyer, Laurent Divay, Christophe Galindo, et al. "Efficient Pump Photon Recycling via Gain-Assisted Waveguiding Energy Transfer." ACS Photonics 1, no. 3 (February 18, 2014): 246–53. http://dx.doi.org/10.1021/ph4001179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gan, Zhixing, Weijian Chen, Lin Yuan, Guiyuan Cao, Chunhua Zhou, Shujuan Huang, Xiaoming Wen, and Baohua Jia. "External stokes shift of perovskite nanocrystals enlarged by photon recycling." Applied Physics Letters 114, no. 1 (January 7, 2019): 011906. http://dx.doi.org/10.1063/1.5081805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Raj, Mothi Madhan, Shigehisa Arai, and Munehisa Tamura. "Photon Recycling Effect in Semiconductor Lasers using Low Dimensional Structures." Japanese Journal of Applied Physics 36, Part 1, No. 10 (October 15, 1997): 6368–75. http://dx.doi.org/10.1143/jjap.36.6368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mochizuki, Kazuhiro. "Vertical GaN bipolar devices: Gaining competitive advantage from photon recycling." physica status solidi (a) 214, no. 3 (September 29, 2016): 1600489. http://dx.doi.org/10.1002/pssa.201600489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Toušek, J., J. Toušková, E. Hulicius, T. Šimeček, J. Pangrác, K. Melichar, Z. Výborný, and V. Jurka. "Influence of photon recycling on photovoltage spectra of GaSb diodes." Journal of Applied Physics 95, no. 9 (May 2004): 5104–10. http://dx.doi.org/10.1063/1.1691477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Park, Byoungchoo, Yoon Ho Huh, and Hong Goo Jeon. "Polarized electroluminescence from organic light-emitting devices using photon recycling." Optics Express 18, no. 19 (September 2, 2010): 19824. http://dx.doi.org/10.1364/oe.18.019824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Steiner, Myles A., John F. Geisz, J. Scott Ward, Ivan Garcia, Daniel J. Friedman, Richard R. King, Philip T. Chiu, et al. "Optically Enhanced Photon Recycling in Mechanically Stacked Multijunction Solar Cells." IEEE Journal of Photovoltaics 6, no. 1 (January 2016): 358–65. http://dx.doi.org/10.1109/jphotov.2015.2494690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Saliba, Michael, Wei Zhang, Victor M. Burlakov, Samuel D. Stranks, Yao Sun, James M. Ball, Michael B. Johnston, Alain Goriely, Ulrich Wiesner, and Henry J. Snaith. "Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells." Advanced Functional Materials 25, no. 31 (July 8, 2015): 5038–46. http://dx.doi.org/10.1002/adfm.201500669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lova, Paola, and Cesare Soci. "Black GaAs: Gold-Assisted Chemical Etching for Light Trapping and Photon Recycling." Micromachines 11, no. 6 (June 5, 2020): 573. http://dx.doi.org/10.3390/mi11060573.

Full text
Abstract:
Thanks to its excellent semiconductor properties, like high charge carrier mobility and absorption coefficient in the near infrared spectral region, GaAs is the material of choice for thin film photovoltaic devices. Because of its high reflectivity, surface microstructuring is a viable approach to further enhance photon absorption of GaAs and improve photovoltaic performance. To this end, metal-assisted chemical etching represents a simple, low-cost, and easy to scale-up microstructuring method, particularly when compared to dry etching methods. In this work, we show that the etched GaAs (black GaAs) has exceptional light trapping properties inducing a 120 times lower surface reflectance than that of polished GaAs and that the structured surface favors photon recycling. As a proof of principle, we investigate photon reabsorption in hybrid GaAs:poly (3-hexylthiophene) heterointerfaces.
APA, Harvard, Vancouver, ISO, and other styles
49

Riboli, F., A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio. "Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides." Photonics and Nanostructures - Fundamentals and Applications 4, no. 1 (February 2006): 41–46. http://dx.doi.org/10.1016/j.photonics.2005.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Renaud, Ph, F. Raymond, B. Bensaïd, and C. Vèrié. "Influence of photon recycling on lifetime and diffusion coefficient in GaAs." Journal of Applied Physics 71, no. 4 (February 15, 1992): 1907–13. http://dx.doi.org/10.1063/1.351179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography