Academic literature on the topic 'Photonic integrated circuits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photonic integrated circuits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photonic integrated circuits"
Dong, Po, Young-Kai Chen, Guang-Hua Duan, and David T. Neilson. "Silicon photonic devices and integrated circuits." Nanophotonics 3, no. 4-5 (August 1, 2014): 215–28. http://dx.doi.org/10.1515/nanoph-2013-0023.
Full textXiang, Chao, Warren Jin, Osama Terra, Bozhang Dong, Heming Wang, Lue Wu, Joel Guo, et al. "3D integration enables ultralow-noise isolator-free lasers in silicon photonics." Nature 620, no. 7972 (August 2, 2023): 78–85. http://dx.doi.org/10.1038/s41586-023-06251-w.
Full textZhang, Chuang, Chang-Ling Zou, Yan Zhao, Chun-Hua Dong, Cong Wei, Hanlin Wang, Yunqi Liu, Guang-Can Guo, Jiannian Yao, and Yong Sheng Zhao. "Organic printed photonics: From microring lasers to integrated circuits." Science Advances 1, no. 8 (September 2015): e1500257. http://dx.doi.org/10.1126/sciadv.1500257.
Full textYakushenkov, P. O. "Photonic Integrated Circuits." Photonics Russia 68, no. 8 (2017): 58–67. http://dx.doi.org/10.22184/1993-7296.2017.68.8.58.67.
Full textKoch, Thomas L., and Uziel Koren. "Photonic Integrated Circuits." AT&T Technical Journal 71, no. 1 (January 2, 1992): 63–74. http://dx.doi.org/10.1002/j.1538-7305.1992.tb00148.x.
Full textMatsuda, Nobuyuki, and Hiroki Takesue. "Generation and manipulation of entangled photons on silicon chips." Nanophotonics 5, no. 3 (August 1, 2016): 440–55. http://dx.doi.org/10.1515/nanoph-2015-0148.
Full textKoch, T. L., and U. Koren. "Semiconductor photonic integrated circuits." IEEE Journal of Quantum Electronics 27, no. 3 (March 1991): 641–53. http://dx.doi.org/10.1109/3.81373.
Full textNagarajan, R., M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, et al. "InP Photonic Integrated Circuits." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (September 2010): 1113–25. http://dx.doi.org/10.1109/jstqe.2009.2037828.
Full textPeng, Hsuan-Tung, Mitchell A. Nahmias, Thomas Ferreira de Lima, Alexander N. Tait, and Bhavin J. Shastri. "Neuromorphic Photonic Integrated Circuits." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 6 (November 2018): 1–15. http://dx.doi.org/10.1109/jstqe.2018.2840448.
Full textLiu, Yang, Zheru Qiu, Xinru Ji, Anton Lukashchuk, Jijun He, Johann Riemensberger, Martin Hafermann, et al. "A photonic integrated circuit–based erbium-doped amplifier." Science 376, no. 6599 (June 17, 2022): 1309–13. http://dx.doi.org/10.1126/science.abo2631.
Full textDissertations / Theses on the topic "Photonic integrated circuits"
Liu, Weilin. "Ultra-Fast Photonic Signal Processors Based on Photonic Integrated Circuits." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36446.
Full textNeto, Hugo Daniel Barbosa. "Packaging of photonic integrated circuits." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23552.
Full textWith the continuous evolution of optical communication systems, emerged a need for high-performance optoelectronic elements at lower costs. Photonic packaging plays a key role for the next-generation of optical devices. In this work a standard packaging design rules is described, covering both the electrical and optical-packaging exploring both active and passive adjusting techniques, as well as the thermal management of the photonic integrated circuit (PIC). First a process for fiber-to-chip coupling with custom made ball-lensed fibers, is performed and tested initially in a testing-chip and thereafter in a manufactured practical study-case composed by a silicon holder with an InP distributed feedback (DFB) laser. The process of manufacturing etched V-grooves for fiber alignment is approached in detail. After this, for electrical interconnects and radio frequency (RF) packaging, both wire-bonding and flip-chip technique are discussed, and a characterization of the s-parameters in a PIC with wire-bonding is presented. A technique based on ruthenium-based sensors and platinum and titanium-based sensors for thermal control of the PIC is studied and the tested using a custom made PCB designed exclusively for that purpose.
Com a constante evolução dos sistemas de comunicação óticos veio a necessidade de componentes optoelectrónicos de elevada performance a custos relativamente baixos. O encapsulamento ótico tem um papel chave nos dispositivos óticos de última geração. Neste trabalho são descritas as regras de um processo de encapsulamento padrão, que abrange tanto o encapsulamento elétrico e ótico onde são exploradas técnicas de ajustamento ativas e passivas bem como o controlo térmico do circuito ótico integrado (PIC). No início foi efetuado um processo de acoplamento da fibra ao chip com fibras de lente esférica personalizadas, numa primeira usando um chip de teste e de seguida num caso de estudo prático que consiste numa estrutura composta por um holder de silício com um laser de realimentação distribuída (DFB). É abordado em detalhe o processo de fabricação de V-grooves para o alinhamento da fibra com o chip. De seguida são apresentadas e discutidas as técnicas de wire-bonding e flip-chip para o encapsulamento elétrico e ligação dos conectores de radiofrequência (RF), é feito um estudo onde são apresentados os resultados da caraterização dos parâmetros S de um PIC com wire-bonding. Para o controlo térmico do módulo é apresentada uma técnica baseada em sensores de temperatura de ruténio e sensores de Platina e titânio testada numa PCB personalizada
Yang, Gang. "Compact Photonic Integrated Passive Circuits." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26958.
Full textChong, Harold Meng Hoon. "Photonic crystal and photonic wire structures for photonic integrated circuits." Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407719.
Full textMarinins, Aleksandrs. "Polymer Components for Photonic Integrated Circuits." Doctoral thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219556.
Full textQC 20171207
Alipour, Motaallem Seyed Payam. "Reconfigurable integrated photonic circuits on silicon." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51792.
Full textRodrigues, Carla Iolanda Costa. "Photonic integrated circuits for NG-EPON." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22732.
Full textAlong with privacy and security, the growth of demand from the consumer for higher bandwidth presents one of the most important modern challenges in telecommunications infrastructures. The researchers were encouraged to nd not only e cient but also the economically viable solutions capable of meeting the growing needs of the consumer. Optical communications are the way that can accompany this growth. The Passive Optical Network (PON) is an architecture that shares the ber bandwidth among several users. There has been a constant study under this topic for the purpose of using all the ber abilities and to nd new solutions to keep the access network simple. Photonic Integrated Circuits (PICs) are a technology that emerged to help the complexity of the hardware that exists nowadays. It is a single chip capable of integrating numerous optical components, which leads to a reduced complexity, size and power consumption. These are the important characteristics that make the PICs a powerful tool to use in several applications. This dissertation presents a monolithic PIC transceiver in the context of Next Generation of Ethernet Passive Optical Network (NG-EPON) which aims to design and implement integrated optical circuits for future access networks. The transceiver architecture is able to be used as an Optical Network Unit (ONU) with a 4 channels approach for 100 Gb/s solutions. The present work contributed for the FUTPON project supported by P2020.
Em par com a privacidade e segurança, a crescente procura do consumidor por maiores larguras de banda apresenta um dos mais importantes desafios modernos das infraestruturas de telecomunicações. Esta procura incentiva assim a investigação de novas soluções não são eficientes, mas também economicamente viáveis, capazes de satisfazer as crescentes necessidades do consumidor. As comunicações óticas apresentam ser o meio apropriado para acompanhar este crescimento. A Rede Óptica Passiva (PON) e uma arquitectura usada para distribuição de fibra ótica ate ao consumidor final. Esta tecnologia permite dividir a largura de banda de uma única fibra por diferentes clientes. Tem havido um estudo constante no âmbito deste tópico para conseguir tirar máximo partido das capacidades da fibra e de modo a encontrar novas soluções para tornar este método mais simples. Os Circuitos Oticos Integrados (PIC) sao uma tecnologia que surge para ajudar na complexidade do hardware existente hoje em dia. Consiste num único chip capaz de integrar vários componentes óticos, o que leva a uma diminuição da complexidade, tamanho e redução do consumo de energia. Estas características fazem com que seja uma tecnologia vantajosa para uso em diferentes aplicações. O desenho e a implementação da arquitectura do transrecetor em formato PIC no contexto da Next Generation of Ethernet Passive Optical Network (NG-EPON), e o principal objectivo desta dissertação onde visa o desenvolvimento circuitos óticos integrados para redes oticas de acesso futuras. Esta arquitectura devera ser utilizada como Optical Network Unit (ONU) contendo 4 canais para atingir 100 Gb/s. Este trabalho contribuiu para o projecto FUTPON suportado pelo P2020.
Koch, Thomas L., Michael Liehr, Douglas Coolbaugh, John E. Bowers, Rod Alferness, Michael Watts, and Lionel Kimerling. "The American Institute for Manufacturing Integrated Photonics: advancing the ecosystem." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/621540.
Full textWilliams, Ryan Daniel. "Photonic integrated circuits for optical logic applications." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42025.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references.
The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated with passive waveguides using the asymmetric twin waveguide technique and the SOAs are placed in a Mach-Zehnder interferometer (MZI) configuration. By sending in high-intensity pulses, the gain characteristics, phase-shifting, and refractive indices of the SOA can be altered, creating constructive or deconstructive interference at the MZI output. Boolean logic and wavelength conversion can be achieved using this technique, building blocks for optical switching and signal regeneration. The fabrication of these devices is complex and the fabrication of two generations of devices is described in this thesis, including optimization of the mask design, photolithography, etching, and backside processing techniques. Testing and characterization of the active and passive components is also reported, confirming gain and emission at 1550 nm for the SOAs, as well as verifying evanescent coupling between the active and passive waveguides. In addition to the vertical integration of photonic waveguides, Esaki tunnel junctions are investigated for vertical electronic integration. Quantum dot formation and growth via molecular beam epitaxy is investigated for emission at the technologically important wavelength of 1310 nm. The effect of indium incorporation on tunnel junctions is investigated. The tunnel junctions are used to epitaxially link multiple quantum dot active regions in series and lasers are designed, fabricated, and tested.
by Ryan Daniel Williams.
Ph.D.
Franco, Eduardo Vala. "Photonic integrated circuits for next generation PONs." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23473.
Full textWe are living in a time where communications became essential for most of our lives, whether it's in the business world, or in our own homes. The increasing need of higher bandwidth inhibits other networks other than optical ber based ones. Nowadays communications are responsible for a substantial percentage of our energetic footprint, hence Passive Optical Network(PON) are a strong contender for the next step of network implementation. These networks present a low energy consumption because between the transmitter and the receiver the signal stays in the optical domain. Although the increasing needs of bandwidth is almost across the communication world, certain services/identities need more bandwidth whether is download or upload. It's easy to understand that di erent consumers have unique needs. It's necessary to develop an architecture that serves all the costumers, in other words, there is a need for a network that provides high bitrate tra c to the users that needs it but also a network that serves the low end user that is not interested in this increase of bandwidth and therefore price in ation. There is today technologies yet to be widely implemented like NG-PON2 that were not implemented in a large scale because they dont represent a nancial return to the telecom operators simply because there is not enough user that requires the high bandwidth delivered by NG-PON2. It's necessary to nd a solution that includes not only the modern technologies but also the already implemented ones. With the objective of nding a solution for the problems mentioned before, this dissertation has the objective of designing a Photonic Integrated Circuit(PIC) that aims to be a transceiver of a Multitech Network that will be composed by the following technologies: Video-Overlay, XG-PON e NG-PON2. This dissertation presents an approach on Passive Optical Networks( PON) and the standards of the said technologies as well as a study of the components needed to assemble the transceiver using the programs ASPIC and VPI Photonics . In the end, there will be presented an architecture for the transceiver to be used in a Optical Network Unit(ONU), and the respective mask Layout.
Vivemos numa época em que as comunicações se tornaram essenciais para grande parte da nossa vida, seja no mundo empresarial, seja nas nossas habitações. A crescente necessidade de aumento de largura de banda inviabiliza outras redes que não baseadas em braotica. Actualmente as comunicações são responsáveis por uma percentagem substancial dos nossos gastos energéticos, justamente por este facto Passive Optical Networks(PON) sao as principais candidatas ao próximo passo no desenvolvimento de redes. Estas apresentam menor consumo energético, pois entre o emissor e o receptor todo o sinal permanece no domínio óptico. Apesar da necessidade de largura de banda estar a aumentar de um modo transversal no mundo das telecomunicações, certos serviços/entidades necessitam de maiores velocidades tanto em termos de download como em termos de upload. E então fácil de perceber que consumidores diferentes têm necessidades diferentes. E necessário encontrar uma arquitectura que agrade a quem necessita de maiores larguras de banda mas também a quem não necessita de um aumento significativo e que, não está disposto a pagar por este. Existem neste momento tecnologias que ainda não foram implementadas em grandes escalas, como o caso de Next Generation Passive Optical Network (NG-PON2), porque não simbolizam um retorno financeiro para as grande operadores, uma vez que o número de potenciais consumidores de tais velocidades ainda não e substancialmente grande. E necessário encontrar uma solução que não so englobe as novas tecnologias como também as já existentes. Com o objectivo de se encontrar um solução para os problemas acima referidos, este trabalho assenta na elaboração de um Circuito integrado fotonico que visa ser um transrecetor de uma arquitetura multi-tecnologia em que irão ser incorporadas tecnologias como Video-Overlay, 10 Gigabit-capable Passive Optical Network (XG-PON) e NG-PON2. Esta dissertação apresenta uma abordagem as Redes Oticas Passivas e também um estudo feito aos componentes usados no transreceptor usando os programas Aspic e VPI Photonics . Porém ser a apresentado o desenho final do transreceptor que ser a usado numa Optical Network Unit(ONU).
Books on the topic "Photonic integrated circuits"
Osgood, Richard, and Xiang Meng. Principles of Photonic Integrated Circuits. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65193-0.
Full textLacoursiere, Catherine. Photonic integrated circuits: New directions. Norwalk, CT: Business Communications Co., 2005.
Find full textLacoursiere, Catherine. Photonic integrated circuits: New directions. Norwalk, CT: Business Communications Co., 2002.
Find full textColdren, Larry A., Scott W. Corzine, and Milan L. Mašanović. Diode Lasers and Photonic Integrated Circuits. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118148167.
Full textCorzine, S. W. (Scott W.) and Mashanovitch Milan 1974-, eds. Diode lasers and photonic integrated circuits. 2nd ed. Hoboken, N.J: Wiley, 2012.
Find full textW, Corzine S., ed. Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
Find full textC, Righini Giancarlo, SPIE Europe, Bas-Rhin (France) Conseil général, and Society of Photo-optical Instrumentation Engineers., eds. Integrated optics, silicon photonics, and photonic integrated circuits: 3-5 April 2006, Strasbourg, France. Bellingham, Wash: SPIE, 2006.
Find full text1932-, Suematsu Yasuharu, and Adams A. R, eds. Handbook of semiconductor lasers and photonic integrated circuits. Tokyo: Chapman & Hall, 1994.
Find full textRighini, Giancarlo C. Silicon photonics and photonic integrated circuits: 7-10 April 2008, Strasbourg, France. Bellingham, Wash: SPIE, 2008.
Find full textRighini, Giancarlo C. Silicon photonics and photonic integrated circuits: 7-10 April 2008, Strasbourg, France. Edited by SPIE Europe, Alsace international, Association française des industries de l'optique et de la photonique, and SPIE (Society). Bellingham, Wash: SPIE, 2008.
Find full textBook chapters on the topic "Photonic integrated circuits"
Bergman, Keren, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, and Gilbert Hendry. "Photonic Interconnects." In Integrated Circuits and Systems, 11–26. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9335-9_2.
Full textBergman, Keren, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, and Gilbert Hendry. "Photonic Network Architectures III: Advanced Photonic Architectures." In Integrated Circuits and Systems, 173–202. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9335-9_7.
Full textMuller, Paul, and Yusuf Leblebici. "Integrated Photonic Systems." In Analog Circuits and Signal Processing, 5–11. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5912-4_2.
Full textBaets, Roel, Wim Bogaerts, Bart Kuyken, Abdul Rahim, Günther Roelkens, Thijs Spuesens, Joris Van Campenhout, and Dries Van Thourhout. "Silicon Photonic Integrated Circuits." In Springer Series in Optical Sciences, 673–737. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42367-8_14.
Full textZimmermann, Horst. "Circuits for Electronic-Photonic Integration." In Silicon Optoelectronic Integrated Circuits, 407–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05822-7_7.
Full textBergman, Keren, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, and Gilbert Hendry. "Photonic Simulation and Design Space." In Integrated Circuits and Systems, 79–99. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9335-9_4.
Full textAsakawa, K., and K. Inoue. "Application to Ultrafast Optical Planar Integrated Circuits." In Photonic Crystals, 261–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40032-5_12.
Full textWakao, Kiyohide. "Optoelectronic and Photonic Integrated Circuits." In Waveguide Optoelectronics, 205–23. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1834-7_10.
Full textAgrawal, Govind P., and Niloy K. Dutta. "Photonic and Optoelectronic Integrated Circuits." In Semiconductor Lasers, 530–46. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4613-0481-4_12.
Full textKoren, Uziel. "Waveguide Based Photonic Integrated Circuits." In Optoelectronic Integration: Physics, Technology and Applications, 233–72. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2686-5_7.
Full textConference papers on the topic "Photonic integrated circuits"
Yao, Jianping. "Photonic integrated circuits for microwave photonics." In 2017 IEEE Photonics Conference (IPC). IEEE, 2017. http://dx.doi.org/10.1109/pc2.2017.8283405.
Full textYao, Jianping. "Photonic Integrated Circuits for Microwave Photonics." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.w1l.1.
Full textColdren, Larry A. "Photonic Integrated Circuits for microwave photonics." In 2010 IEEE Topical Meeting on Microwave Photonics (MWP 2010). IEEE, 2010. http://dx.doi.org/10.1109/mwp.2010.5664249.
Full textMoore, Kaitlin R. "Photonics in quantum: Photonic integrated circuits." In Quantum West, edited by Conference Chair. SPIE, 2021. http://dx.doi.org/10.1117/12.2593561.
Full textKOCH, THOMAS L., and U. KOREN. "Photonic integrated circuits." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1990. http://dx.doi.org/10.1364/ofc.1990.thi1.
Full textKoren, Uziel. "Photonic integrated circuits." In Semiconductors '92, edited by John E. Bowers and Umesh K. Mishra. SPIE, 1992. http://dx.doi.org/10.1117/12.137705.
Full textDomenech, J. David, Marco A. G. Porcel, Hilde Jans, Romano Hoofman, Douwe Geuzebroek, Pieter Dumon, Marcel van der Vliet, et al. "PIX4life: photonic integrated circuits for bio-photonics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/iprsn.2018.ith3b.1.
Full textKoch, T. L., and U. Koren. "Semiconductor photonic integrated circuits." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ipr.1990.ma3.
Full textChen, Lawrence R., Reza Ashrafi, Junjia Wang, Mohammad Rezagholipour Dizaji, M. Shafiqul Hai, Odile Liboiron-Ladouceur, and Rhys Adams. "Photonic integrated circuits for microwave photonics applications." In 2014 International Topical Meeting on Microwave Photonics (MWP) jointly held with the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP). IEEE, 2014. http://dx.doi.org/10.1109/mwp.2014.6994482.
Full textFaurby, Carlos F. D., Ying Wang, Stefano Paesani, Fabian Ruf, Nicolas Volet, Martijn J. R. Heck, Andreas D. Wieck, Arne Ludwig, Leonardo Midolo, and Peter Lodahl. "Quantum-Dot Single-Photon Sources Processed on Silicon-Nitride Integrated Circuits." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth4j.4.
Full textReports on the topic "Photonic integrated circuits"
Shakouri, Ali, Bin Liu, Patrick Abraham, and John E. Bowers. 3D Photonic Integrated Circuits for WDM Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada461796.
Full textYang, Guosong. Applications of photonic integrated circuits in biomedicine. ResearchHub Technologies, Inc., May 2024. http://dx.doi.org/10.55277/researchhub.qqgg5z6j.
Full textAdibi, Ali. PECASE: All-Optical Photonic Integrated Circuits in Silicon. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada559908.
Full textEnglund, Dirk, Karl Berggren, Jeffrey Shapiro, Chee W. Wong, Franco Wong, and Gregory Wornell. High-Speed Quantum Key Distribution Using Photonic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada606948.
Full textEnglund, Dirk, Karl Berggren, Jeffrey Shapiro, Chee W. Wong, Franco Wong, and Gregory Wornell. High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada603763.
Full textChristodoulou, Christos. (DCT) A Reconfigurable RF Photonics Unit Cell For Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada578997.
Full textVawter, G. A., A. Mar, J. Zolper, and V. Hietala. Photonic integrated circuit for all-optical millimeter-wave signal generation. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/469141.
Full textSullivan, C. T. GaAs Photonic Integrated Circuit (PIC) development for high performance communications. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/607505.
Full text