Academic literature on the topic 'Photonics, Nanostructures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photonics, Nanostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photonics, Nanostructures"

1

Yang, Ming, Xiaohua Chen, Zidong Wang, et al. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications." Nanomaterials 11, no. 8 (2021): 1895. http://dx.doi.org/10.3390/nano11081895.

Full text
Abstract:
Metal nanostructured materials, with many excellent and unique physical and mechanical properties compared to macroscopic bulk materials, have been widely used in the fields of electronics, bioimaging, sensing, photonics, biomimetic biology, information, and energy storage. It is worthy of noting that most of these applications require the use of nanostructured metals with specific controlled properties, which are significantly dependent on a series of physical parameters of its characteristic size, geometry, composition, and structure. Therefore, research on low-cost preparation of metal nano
APA, Harvard, Vancouver, ISO, and other styles
2

Chin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.

Full text
Abstract:
Light-matter interactions have been explored for more than 40 years to achieve physical modulation of nanostructures or the manipulation of nanoparticle/biomolecule. Silicon photonics is a mature technology with standard fabrication techniques to fabricate micro- and nano-sized structures with a wide range of material properties (silicon oxides, silicon nitrides, p- and n-doping, etc.), high dielectric properties, high integration compatibility, and high biocompatibilities. Owing to these superior characteristics, silicon photonics is a promising approach to demonstrate optical force-based int
APA, Harvard, Vancouver, ISO, and other styles
3

Torres-Costa, Vicente. "Nanostructures for Photonics and Optoelectronics." Nanomaterials 12, no. 11 (2022): 1820. http://dx.doi.org/10.3390/nano12111820.

Full text
Abstract:
As microelectronic technology approaches the limit of what can be achieved in terms of speed and integration level, there is an increasing interest in moving from electronics to photonics, where photons and light beams replace electrons and electrical currents, which will result in higher processing speeds and lower power consumption [...]
APA, Harvard, Vancouver, ISO, and other styles
4

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Full text
Abstract:
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing
APA, Harvard, Vancouver, ISO, and other styles
5

Koshelev, Kirill, Gael Favraud, Andrey Bogdanov, Yuri Kivshar, and Andrea Fratalocchi. "Nonradiating photonics with resonant dielectric nanostructures." Nanophotonics 8, no. 5 (2019): 725–45. http://dx.doi.org/10.1515/nanoph-2019-0024.

Full text
Abstract:
AbstractNonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a pr
APA, Harvard, Vancouver, ISO, and other styles
6

Erb, Denise J., Kai Schlage, and Ralf Röhlsberger. "Uniform metal nanostructures with long-range order via three-step hierarchical self-assembly." Science Advances 1, no. 10 (2015): e1500751. http://dx.doi.org/10.1126/sciadv.1500751.

Full text
Abstract:
Large-scale nanopatterning is a major issue in nanoscience and nanotechnology, but conventional top-down approaches are challenging because of instrumentation and process complexity while often lacking the desired spatial resolution. We present a hierarchical bottom-up nanopatterning routine using exclusively self-assembly processes: By combining crystal surface reconstruction, microphase separation of copolymers, and selective metal diffusion, we produce monodisperse metal nanostructures in highly regular arrays covering areas of square centimeters. In situ grazing incidence small-angle x-ray
APA, Harvard, Vancouver, ISO, and other styles
7

Alfimov, M. V. "Photonics of supramolecular nanostructures." Russian Chemical Bulletin 53, no. 7 (2004): 1357–68. http://dx.doi.org/10.1023/b:rucb.0000046232.92572.e1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bettotti, P., M. Cazzanelli, L. Dal Negro, et al. "Silicon nanostructures for photonics." Journal of Physics: Condensed Matter 14, no. 35 (2002): 8253–81. http://dx.doi.org/10.1088/0953-8984/14/35/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Busch, K., G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener. "Periodic nanostructures for photonics." Physics Reports 444, no. 3-6 (2007): 101–202. http://dx.doi.org/10.1016/j.physrep.2007.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Tommasi, E., E. Esposito, S. Romano, et al. "Frontiers of light manipulation in natural, metallic, and dielectric nanostructures." La Rivista del Nuovo Cimento 44, no. 1 (2021): 1–68. http://dx.doi.org/10.1007/s40766-021-00015-w.

Full text
Abstract:
AbstractThe ability to control light at the nanoscale is at the basis of contemporary photonics and plasmonics. In particular, properly engineered periodic nanostructures not only allow the inhibition of propagation of light at specific spectral ranges or its confinement in nanocavities or waveguides, but make also possible field enhancement effects in vibrational, Raman, infrared and fluorescence spectroscopies, paving the way to the development of novel high-performance optical sensors. All these devices find an impressive analogy in nearly-periodic photonic nanostructures present in several
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!