Academic literature on the topic 'Photosynthese'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photosynthese.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photosynthese"

1

Weitzel, Karl-Michael. "Photosynthese." Nachrichten aus Chemie, Technik und Laboratorium 44, no. 7-8 (July 1996): 705–12. http://dx.doi.org/10.1002/nadc.19960440709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leusmann, Eliza. "Künstliche Photosynthese." Nachrichten aus der Chemie 66, no. 9 (September 2018): 866. http://dx.doi.org/10.1002/nadc.20184077748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Köhler, Jürgen. "Photosynthese und Exzitonen: Quantenzustände in Antennenkomplexen beschleunigen die Photosynthese." Physik Journal 56, no. 1 (January 2000): 47–50. http://dx.doi.org/10.1002/phbl.20000560114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pospíšilová, Jana. "Psychologie der photosynthese." Biologia Plantarum 28, no. 2 (March 1986): 129. http://dx.doi.org/10.1007/bf02885209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Groß, Michael. "Photosynthese unter Kontrolle?" Nachrichten aus der Chemie 62, no. 7-8 (July 2014): 769–70. http://dx.doi.org/10.1002/nadc.201490257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Becker, Klaus, John M. Lupton, and Jochen Feldmann. "Photosynthese in neuem Licht." Physik in unserer Zeit 38, no. 1 (January 2007): 7–8. http://dx.doi.org/10.1002/piuz.200690132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brennicke, Axel. "Evolution der C4-Photosynthese." Biologie in unserer Zeit 41, no. 6 (December 2011): 362–63. http://dx.doi.org/10.1002/biuz.201190095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heldt, Hans Walter, Ulf Ingo Flügge, and Mark Stitt. "Kohlenhydratstoffwechsel der pflanzlichen Photosynthese." Biologie in unserer Zeit 16, no. 4 (August 1986): 97–105. http://dx.doi.org/10.1002/biuz.19860160404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drews, Gerhart, and Jürgen Oelze. "Photosynthese bei phototrophen Bakterien." Biologie in unserer Zeit 16, no. 4 (August 1986): 113–23. http://dx.doi.org/10.1002/biuz.19860160406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Von Wettstein, Diter, and Richard P. Oliver. "Zur Molekularbiologie der Photosynthese." Berichte der Deutschen Botanischen Gesellschaft 98, no. 1 (October 1985): 261–87. http://dx.doi.org/10.1111/j.1438-8677.1985.tb02920.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Photosynthese"

1

Ullmann, G. Matthias. "Simulation and analysis of docking and molecular dynamics of electron transfer protein complexes." [S.l. : s.n.], 1998. http://darwin.inf.fu-berlin.de/1998/23/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feilke, Kathleen. "Biochemical characterization of the plastid terminal oxidase and its implication in photosynthesis." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS051/document.

Full text
Abstract:
L'oxydase terminale plastidiale (PTOX) est présente uniquement chez les organismesphotosynthétiques. PTOX oxyde le plastoquinol (PQH2) et réduit l'oxygène en eau.PTOX est impliquée dans la synthèse des caroténoïdes, dans le transportphotosynthétique d'électrons et dans la chlororespiration. De plus, son activité estconsidérée comme pouvant jouer un rôle en tant que soupape de sécurité, permettant de maintenir oxydé le pool de plastoquinones (PQ) et d'éviter la surréduction duchloroplaste et ainsi la photoinhibition. Chez la majorité des plantes testées, les niveaux de PTOX sont plus élevés dans des conditions de stress (une exposition à forte intensité lumineuse, par exemple). D'autre part, la surexpression de PTOX chez Arabidopsis thaliana n'a pas rendu les plantes moins sensibles à la photoinhibition. Par ailleurs, il semble que PTOX surexprimée chez Nicotiana tabacum a induit la génération des espèces réactives de l'oxygène (ERO) et une photoinhibition importante sous forte lumière.Le but de cette thèse était la caractérisation de l'activité enzymatique de PTOX enutilisant la protéine purifiée et de comprendre pourquoi PTOX protège du stressphotooxydant dans certaines conditions et pourquoi elle augmente ce stress quand elle est surexprimée in planta.L'analyse biochimique de PTOX recombinante purifiée a démontré que l'enzymeexiste principalement sous forme tétramérique. Cette forme se dissocie partiellement,principalement en dimères. Le turnover maximal de l'enzyme purifié correspond à 320électrons par seconde et par molécule de PTOX. Nous avons démontré que PTOXgénère des ERO dans une réaction secondaire dépendante de la concentration dusubstrat (PQH2) et du pH de la solution. À pH 8 (représentant le pH du stroma deschloroplastes actifs), PTOX a une activité antioxydante quand la concentration de PQH2 est basse et prooxydante quand cette concentration est élevée.En mesurant la fluorescence de la chlorophylle a, nous avons démontré quePTOX est active lorsqu'elle est ajoutée aux membranes enrichies en PSII.L'attachement aux membranes dépend du pH et de cations de la solution: lorsque le pHdiminue ou lorsque la solution est riche en cations monovalents, la quantité de PTOXattachée à la membrane diminue.L'activité de PTOX in planta et son effet sur le transport des électronsphotosynthétiques ont été analysés en utilisant Arabidopsis thaliana surexprimant laphytoène désaturase bactérienne (CRTI) et Nicotiana tabacum surexprimant PTOX1 deChlamydomonas reinhardtii. Arabidopsis thaliana surexprimant CRTI a un niveau plusimportant de PTOX et de production d'ERO et le transport cyclique des électrons estsupprimé chez les transformants. Cela implique que PTOX est en compétition avec letransfert cyclique pour les électrons du pool PQ et que PTOX joue un rôle importantdans le contrôle de l'état rédox de ce pool. En utilisant Nicotiana tabacum surexprimant PTOX1, nous avons démontré que PTOX fait concurrence au transfert linéaire d'électrons photosynthétique, mais que PTOX est inactivée quand le pH du stroma est neutre. Grâce aux résultats obtenus, nous proposons un modèle où l'association de PTOX avec la membrane est contrôlée par le pH du stroma. Quand le pH est neutre, PTOX est soluble et n'est pas active, ce qui évite l'interférence avec le transfert linéaire d'électrons. Quand le pH du stroma est alcalin et la chaîne des transporteurs photosynthétiques est surréduite (lors des conditions du stress), PTOX s'attache à la membrane, devient active et joue le rôle de soupape de sécurité
The plastid terminal oxidase PTOX is encoded by higher plants, algae and some cyanobacteria. PTOX is a plastid-localized plastoquinol (PQH2) oxygen oxidoreductase. PTOX was shown to be implicated in plant carotenoid biosynthesis, photosynthetic electron transport and chlororespiration and may act as a safety valve protecting plants against photo-oxidative stress. PTOX protein levels increase during abiotic stress indicating a function in stress acclimation. But overexpression of PTOX in Arabidopsis did not attenuate the severity of photoinhibition or, when overexpressed in tobacco, even increased the production of reactive oxygen species (ROS) and exacerbated photoinhibition.Biochemical analysis of recombinant purified PTOX (PTOX from rice fused to the maltose-binding protein) showed that the enzyme exists mainly as a tetramer, which dissociated to a certain extent during electrophoresis, mainly into a dimeric form. The PTOX activity was 320 electrons s−1 PTOX−1. It was also shown that PTOX generates ROS in a side reaction in a substrate (decylPQH2) and pH-dependent manner when liposomes were used: at the basic stromal pH of photosynthetically active chloroplasts, PTOX was antioxidant at low decylPQH2 gaining prooxidant properties with increasing quinol concentrations. It is concluded that PTOX can act as a safety valve when the steady state [PQH2] is low while a certain amount of ROS is formed at high light intensities.It was shown by chlorophyll a fluorescence that recombinant purified PTOX is active when added to photosystem II (PSII)-enriched membrane fragments. PTOX attached tightly to the PSII-enriched membrane fragments. The amount of PTOX attaching to the membrane depended on pH and salts: an alkaline pH and monovalent compared to divalent cations increased PTOX attachment.PTOX activity in planta and its effect on photosynthetic electron transport were investigated using Arabidopsis expressing bacterial phytoene desaturase and tobacco expressing PTOX1 from Chlamydomonas. Arabidopsis expressing bacterial phytoene desaturase (CRTI lines) showed a higher PTOX content and increased PTOX related ROS generation. Furthermore, cyclic electron flow was suppressed in these lines. This implicates that PTOX competes efficiently with cyclic electron flow for PQH2 in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool. Using tobacco expressing PTOX1 from Chlamydomonas, it was shown that PTOX competes efficiently with photosynthetic electron flow, but gets inactive when the stromal pH is neutral. Based on the in vitro and in vivo results, a model is proposed, where the association of PTOX to the membrane is controlled by the stromal pH: When the stromal pH is neutral, PTOX exists as a soluble form and is enzymatically inactive avoiding the interference of PTOX with linear electron flow. When the stromal pH is alkaline and the photosynthetic electron chain is highly reduced under stress conditions as high light, PTOX binds to the membrane, gets enzymatically active and can serve as safety valve
APA, Harvard, Vancouver, ISO, and other styles
3

Fuhs, Michael. "Strukturuntersuchung mit zeitaufgelöster Elektronenspinresonanz an Modellsystemen der Photosynthese und stochastische Elektronenspinresonanz bei 95 GHz." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/2000/3/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matika, Andreas. "Die Regulation der Photosynthese durch Proteinphosphatasen in Chlamydomonas reinhardtii." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=959084630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schlensog, Mark. "Zur Photosynthese antarktischer Kryptogamen unter besonderer Berücksichtigung von Photoinhibition." [S.l. : s.n.], 2000. http://e-diss.uni-kiel.de/diss$/d367.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wehling, Axel. "Zweiphotonenuntersuchungen zur Rolle von Carotinoiden in der Regulation der Photosynthese." [S.l.] : [s.n.], 2006. http://www.digibib.tu-bs.de/?docid=00018005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Könekamp, Thorsten [Verfasser]. "Biomimetische Photosynthese Systeme - Selektive Totalsynthese und strukturelle Charakterisierung / Thorsten Könekamp." Aachen : Shaker, 2007. http://d-nb.info/1164340913/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bechtold, Michael. "Gepulste Elektronenspinresonanz an Radikalpaaren der Photosynthese Nachweis von photochemisch induzierten Kernkohärenzen /." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961002425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seibert, Sven [Verfasser]. "Regulation der Photosynthese für die Stickstoff-Fixierung in Trichodesmium / Sven Seibert." Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1079010173/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LE, GOUALLEC JEAN LUC. "Effets de forts eclairements sur la photosynthese de elatostema repens (urticaceae)." Paris 6, 1989. http://www.theses.fr/1989PA066303.

Full text
Abstract:
Elatostema repens, plante de sous bois des forets tropicales humides de la peninsule malaise, a ete exposee a des eclairements eleves (1/3 du plein soleil) donnee de maniere continue, pour simuler l'apparition d'un chablis, ou sequencee, pour simuler les taches de lumiere. Ces expositions conduisent immediatement a une photoinhibition de la photosynthese. Celle-ci apparait selon deux phases. Durant la premiere, avant une heure d'exposition au fort eclairement, il se produit une diminution du rendement quantique independant de l'activite psii. La reparation d'une ou plusieurs proteines psii, grace a un stock de mrna protege alors mieux le psii qu'une dissipation thermique de l'energie d'excitation qui se produit egalement. La seconde phase de photoinhibition est ensuite reliee a une destruction de centres psii. Contraitement aux autres plantes precedemment etudiees, elastostema repens est sensibilisee a la photoinhibition par la presence d'oxygene. De plus, cette espece s'est revelee sensibilisee a la photoinhibition par les forts deficits hydriques foliaires. Il est conclu que, in situ, la photoinhibition doit avoir un effet negatif important lors de l'apparition de chablis mais rarement lors des taches de lumiere
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Photosynthese"

1

Hall, D. O. Photosynthesis. 6th ed. Cambridge, UK: Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, D. O. Photosynthesis. 5th ed. Cambridge [England]: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dau, Holger, Philipp Kurz, and Marc-Denis Weitze. Künstliche Photosynthese. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-55718-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jerusalem Symposium on Quantum Chemistry and Biochemistry (22nd 1989). Perspectives in photosynthesis: Proceedings of the Twenty-second Jerusalem Symposium on Quantum Chemistry and Biochemistry held in Jerusalem, Israel, May 15-18, 1989. Dordrecht, [Netherlands]: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buschmann, Claus, and Karl Grumbach. Physiologie der Photosynthese. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70255-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hartmann, Volker. Die Photosynthese als erneuerbare Energie. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09187-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wyss, Franz Philipp. Vergleichende Untersuchungen an Photosynthese Membranen verschiedener Purpurbakterien. [s.l.]: [s.n.], 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

E, Steinback Katherine, ed. Molecular biology of the photosynthetic apparatus. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Renger, G. Wirkung von Umweltchemikalien auf die Primärprozesse der Photosynthese. München: Gesellschaft für Strahlen- und Umweltforschung, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gregory, R. P. F. Photosynthesis. Glasgow: Blackie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Photosynthese"

1

von Sengbusch, Peter. "Photosynthese." In Einführung in die Allgemeine Biologie, 83–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70077-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christen, Philipp, Rolf Jaussi, and Roger Benoit. "Photosynthese." In Biochemie und Molekularbiologie, 259–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46430-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kremer, Bruno P. "Photosynthese." In Basiswissen Physik, Chemie und Biochemie, 381–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10767-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bannwarth, Horst, Bruno P. Kremer, and Andreas Schulz. "Photosynthese." In Basiswissen Physik, Chemie und Biochemie, 401–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36635-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Christen, Philipp, Rolf Jaussi, and Roger Benoit. "Photosynthese." In Biochemie und Molekularbiologie, 317–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-65477-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bannwarth, Horst, Bruno P. Kremer, and Andreas Schulz. "Photosynthese." In Basiswissen Physik, Chemie und Biochemie, 409–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58250-3_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

von der Saal, Karin. "Photosynthese." In Biochemie, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60690-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Münch, Harald. "Photosynthese." In Wissenschaftliches Englisch, 25–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55299-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chamary, JV. "Photosynthese." In 50 Schlüsselideen Biologie, 76–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48381-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Birch, Hayley. "Photosynthese." In 50 Schlüsselideen Chemie, 148–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48510-1_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photosynthese"

1

Yao, Kaiwen, and Shuang Wang. "Teach Photosynthesis to Young Students Using Augmented Reality." In 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 41–43. IEEE, 2024. http://dx.doi.org/10.1109/icalt61570.2024.00018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neofytou, Eleni, Stelios P. Neophytides, Ilias Tsoumas, Andria Tsalakou, Michalakis Christoforou, Marinos Eliades, Christiana Papoutsa, Charalampos Kontoes, and Diofantos G. Hadjimitsis. "Potato yield empowerment by photosynthesis, carbon assimilation, and evapotranspiration." In Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), edited by Silas C. Michaelides, Diofantos G. Hadjimitsis, Chris Danezis, Nicholas Kyriakides, Andreas Christofe, Kyriacos Themistocleous, and Gunter Schreier, 37. SPIE, 2024. http://dx.doi.org/10.1117/12.3037291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, He, Wang Xiaoxiao, Pu Min, Liu Xiaoying, Gan Lijun, and Xu Zhigang. "Effect different spectral LED on photosynthesis and distribution of photosynthate of cherry tomato seedlings." In 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2017. http://dx.doi.org/10.1109/ifws.2017.8245979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Jenny. "Semi-artificial Photosynthesis: a Platform for Studying and Wiring Photosynthesis." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greenbaum, Adam, Stefan Slagowski, Lars Dyrud, Dave Landis, Thomas Hilker, Joanna Joiner, Scott Schaire, et al. "The Earth Photosynthesis Imaging Constellation: Measuring Photosynthesis with a cubesat platform." In 2015 IEEE Aerospace Conference. IEEE, 2015. http://dx.doi.org/10.1109/aero.2015.7118998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

VAGUSEVICIENĖ, Ilona, Sonata KAZLAUSKAITĖ, Aiste JUCHNEVICIENĖ, Asta BYLAITE, and Audrone ŽEBRAUSKIENĖ. "COMPARISON OF PHOTOSYNTHETIC PARAMETERS IN DIFFERENT WHEAT (TRITICUM AESTIVUM L.) VARIETIES." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.064.

Full text
Abstract:
Dynamics of photosynthesis pigments in the leaves of different varieties of winter wheat during the vegetation period is analyzed in the paper. The accumulation of pigments in the plant depends on the physiological activity, growth and development of the plant, therefore the composition and content of photosynthesis pigments chlorophyll a, b and carotenoids reflect the general condition of the plant. The ratio of chlorophyll a / b for normal photosynthesis activity in the leaves of the plant should be at least 1:3. The object of the research is different varieties of winter wheat (Triticum aestivum L.) - 'Artist', 'Edvin', 'Skagen', 'Bertold' and 'Viola'. Field experiment was carried out at the Experimental Station of Aleksandras Stulginskis University in 2015-2016. Soil type was identified as IDg8 - k (LVg - p - w - cc) - shallow calcareous luvisol (Calc (ar) i - Epihypogleyic Luvisols). Agrochemical parameters of the soil were determined using accepted analytical methods. The content of photosynthesis pigments (chlorophyll a, b and carotenoids) in green leaf mass was determined in 96% ethyl alcohol extract applying spectrophotometric Wettstein method, “Genesys” 6 spectrophotometer. The photosynthesis productivity (Fpr) was calculated according to the formula: Fpr = 2 (M2-M1) / (L1 + L2) T. The accuracy of the data analysis was estimated according to the standard measurement deviation from the mean. The highest content of photosynthesis pigments has been accumulated by winter wheat variety 'Skagen'. The best result has been observed at the end of nodding stage. A lower content of photosynthesis pigments has been found in the leaves of 'Edvin', 'Viola' and 'Artist' varieties. The highest photosynthesis productivity of all winter wheat varieties has been recorded at the end of nodding stage, and decrease of photosynthesis productivity has been observed since milk maturity stage.
APA, Harvard, Vancouver, ISO, and other styles
7

Ren, Xiang, Miao Yu, Xiaohang Zhou, Qingwei Zhang, and Jack Zhou. "Fabrication of Chitosan Porous Structure and Applications on Artificial Photosynthesis Device." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1109.

Full text
Abstract:
Research and development on artificial photosynthesis provide a new direction to obtain sustainable energy. To increase the artificial photosynthesis reaction rates and the efficiency of collecting the energy product, a novel artificial photosynthesis device was designed and developed to constrain the photosynthesis reactions in chitosan porous structure. Both 3D printing and molding-casting could be used in fabrication of chitosan structure on artificial photosynthesis devices. In molding and casting, the molds were made by acrylonitrile butadiene styrene (ABS) and polydimethylsiloxane (PDMS). Concurrently, 3D interconnected chitosan channels were built with a user-made heterogeneous 3D rapid prototyping machine, and the lyophilization method was used to generate the micro or nano pores inside the chitosan scaffold. After lyophilization, the pore size and porosity was generated by MATLAB image processing. CO2 absorption was simulated based on porous structures properties when import the chitosan into the artificial photosynthesis devices. The results suggested that chitosan porous structure is a good candidate to be an interface between atmosphere and micro-fluidic devices with biochemical reactions.
APA, Harvard, Vancouver, ISO, and other styles
8

Choob, V. V. "CAM-metabolism as a biochemical adaptation to arid conditions." In Роль коллекций в сохранении биоразнообразия суккулентных растений ex situ, 167–72. Издательство Московского университета, 2024. https://doi.org/10.55959/msu012039-4-2024-7-33.

Full text
Abstract:
The adaptive traits of photosynthesis in succulent plants, growing under extreme ecological conditions (drought, heat, salinity) were reviewed. There were elucidated the history of invention and the principal chemical reactions of CAM-photosynthesis. There were demonstrated some modifications of photosynthetic functions in respect to water supply and some other factors. The evolutionary trends of CAM-photosynthesis emerging in different plant lineages were discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Korner, Christian. "When growth controls photosynthesis." In 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2012. http://dx.doi.org/10.1109/pma.2012.6524804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bisio, G., and A. Bisio. "Thermodynamic analysis of photosynthesis." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3924.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photosynthese"

1

Greenbaum, E. (Biotechnology and photosynthesis). Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/6819647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greenbaum, E. (Photosynthesis and biotechnology). Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/6925691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bruce, Barry. 26th Western Photosynthesis Conference. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1545635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holder, Alvin A. Photosynthesis at the Microscale. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada582510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Silver, Pamela A. Synthetic Biological Engineering of Photosynthesis. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ad1006768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steven Chuang. CO2 Sequestration and Recycle by Photosynthesis. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/896673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steven S.C. Chuang. CO2 Sequestration and Recycle by Photosynthesis. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/882062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steven S.C. Chuang. CO2 Sequestration and Recycle by Photosynthesis. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/883708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steven S.C. Chuang. CO2 Sequestration and Recycle by Photosynthesis. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/883709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steven S.C. Chuang. CO2 Sequestration and Recycle by Photosynthesis. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/883710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography