Academic literature on the topic 'Photosynthesis; Phosphorylation; ATP synthase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photosynthesis; Phosphorylation; ATP synthase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photosynthesis; Phosphorylation; ATP synthase"

1

Zhang, Jili, Peng Wang, Jinfeng Ji, Huaiyu Long, and Xia Wu. "Transcriptome analysis reveals the molecular mechanism of yield increases in maize under stable soil water supply." PLOS ONE 16, no. 9 (2021): e0257756. http://dx.doi.org/10.1371/journal.pone.0257756.

Full text
Abstract:
This study explored the physiological and molecular mechanisms of yield increase in maize under stable soil water content (SW) conditions. Results of the study showed that under SW conditions, corn yield increased by 38.72 and 44.09% in 2019 and 2020, respectively. Further, it was found that dry matter accumulation, economic coefficient and photosynthetic rate also increased by 31.24 and 25.67%, 5.45 and 15.38% as well as 29.60 and 31.83% in 2019 and 2020 respectively. However, the results showed that both the activity of antioxidant enzymes and content of osmotic adjustment substances decreased in maize under SW conditions. When compared with soil moisture content of dry and wet alternation (DW) conditions, SW could not only significantly promote growth and yield of maize but also increase the economic coefficient. Transcriptome profiles of maize leaves under the two conditions (SW and DW) were also analyzed and compared. It was found that 11 genes were highly up-regulated in the photosynthesis pathway. These genes included photosystem II protein V (PsbE), photosystem II protein VI (PsbF), photosystem II protein D1 (PsbA), photosystem II protein D2 (PsbD) and ATP synthase CF1 beta subunit (atpB). Further, it was found that four genes were up-regulated in the oxidative phosphorylation pathway., These were ATP synthase CF1 epsilon subunit (atpE), ATP synthase CF1 beta subunit (atpB), NADH dehydrogenase subunit 4L (ndhE) and NADH dehydrogenase subunit 6 (ndhG). In conclusion, the physiological mechanism of stable soil water content (SW) to increase corn yield may be the enhancement of photosynthetic capacity and energy metabolism.
APA, Harvard, Vancouver, ISO, and other styles
2

Mccarty, RE. "A PLANT BIOCHEMIST'S VIEW OF H+-ATPases AND ATP SYNTHASES." Journal of Experimental Biology 172, no. 1 (1992): 431–41. http://dx.doi.org/10.1242/jeb.172.1.431.

Full text
Abstract:
My twenty-five year fascination with membrane ATPases grew out of my experiences in the laboratories of André Jagendorf and Efraim Racker. André introduced me to photosynthetic phosphorylation and Ef, to whose memory this article is dedicated, convinced me that ATPases had much to do with ATP synthesis. Astounding progress has been made in the H+-ATPase field in just two decades. By the early 1970s, it was generally recognized that oxidative and photosynthetic ATP synthesis were catalyzed by membrane enzymes that could act as H+-ATPases and that the common intermediate between electron transport and phosphorylation is the electrochemical proton gradient. At that time, it had been shown that a cation-stimulated ATPase activity was associated with plasma membrane preparations from plant roots. The endomembrane or vacuolar ATPases were unknown. The application of improved biochemical methods for membrane isolation and purification, as well as membrane protein reconstitutions, led rapidly to the conclusion that there are three major classes of membrane H+-ATPases, P, V and F. P-ATPases, which will not be considered further in this article, are phosphorylated during their catalytic cycle and have a much simpler polypeptide composition than V- or F-ATPases. The plasma membrane H+-ATPase of plant, yeasts and fungal cells is one example of this class of enzymes (see Pedersen and Carafoli, 1987, for a comparison of plasma membrane ATPases). Biochemical and gene sequencing analysis have revealed that V- and F-ATPases resemble each other structurally, but are distinct in function and origin. The 'V' stands for vacuolar and the 'F' for F1Fo. F1 was the first factor isolated from bovine heart mitochondria shown to be required for oxidative phosphorylation. Fo was so named because it is a factor that conferred oligomycin sensitivity to soluble F1. Other F-ATPases are often named to indicate their sources. For example, chloroplast F1 is denoted CF1 (see Racker, 1965, for early work on F1). Recent successes in reconstitution of vacuolar ATPase have led to a V1Vo nomenclature for this enzyme as well. The term 'ATP synthase' is now in general use to describe F-ATPases. This term emphasizes the facts that although F-ATPases function to synthesize ATP, they do not catalyze, normally, ATP hydrolysis linked to proton flux. In contrast, V-ATPases are very unlikely to operate as ATP synthases. Thus, F-ATPases are proton gradient consumers, whereas V-ATPases generate proton gradients at the expense of hydrolysis. In this brief review, I will compare the structures of F- and V-ATPases. Also, I give some insight into the mechanisms that help prevent wasteful ATP hydrolysis by the chloroplast ATP synthase (CF1Fo).
APA, Harvard, Vancouver, ISO, and other styles
3

Olalde-Portugal, Víctor, José Luis Cabrera-Ponce, Argel Gastelum-Arellanez, Armando Guerrero-Rangel, Robert Winkler, and Silvia Valdés-Rodríguez. "Proteomic analysis and interactions network in leaves of mycorrhizal and nonmycorrhizal sorghum plants under water deficit." PeerJ 8 (April 23, 2020): e8991. http://dx.doi.org/10.7717/peerj.8991.

Full text
Abstract:
For understanding the water deficit stress mechanism in sorghum, we conducted a physiological and proteomic analysis in the leaves of Sorghum bicolor L. Moench (a drought tolerant crop model) of non-colonized and colonized plants with a consortium of arbuscular mycorrhizal fungi. Physiological results indicate that mycorrhizal fungi association enhances growth and photosynthesis in plants, under normal and water deficit conditions. 2D-electrophoresis profiles revealed 51 differentially accumulated proteins in response to water deficit, of which HPLC/MS successfully identified 49. Bioinformatics analysis of protein–protein interactions revealed the participation of different metabolic pathways in nonmycorrhizal compared to mycorrhizal sorghum plants under water deficit. In noninoculated plants, the altered proteins are related to protein synthesis and folding (50S ribosomal protein L1, 30S ribosomal protein S10, Nascent polypeptide-associated complex subunit alpha), coupled with multiple signal transduction pathways, guanine nucleotide-binding beta subunit (Rack1) and peptidyl-prolyl-cis-trans isomerase (ROC4). In contrast, in mycorrhizal plants, proteins related to energy metabolism (ATP synthase-24kDa, ATP synthase β), carbon metabolism (malate dehydrogenase, triosephosphate isomerase, sucrose-phosphatase), oxidative phosphorylation (mitochondrial-processing peptidase) and sulfur metabolism (thiosulfate/3-mercaptopyruvate sulfurtransferase) were found. Our results provide a set of proteins of different metabolic pathways involved in water deficit produced by sorghum plants alone or associated with a consortium of arbuscular mycorrhizal fungi isolated from the tropical rain forest Los Tuxtlas Veracruz, México.
APA, Harvard, Vancouver, ISO, and other styles
4

Jarmuszkiewicz, W. "Uncoupling proteins in mitochondria of plants and some microorganisms." Acta Biochimica Polonica 48, no. 1 (2001): 145–55. http://dx.doi.org/10.18388/abp.2001_5121.

Full text
Abstract:
Uncoupling proteins, members of the mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. Since 1995, it has been shown that the uncoupling protein is present in many higher plants and some microorganisms like non-photosynthetic amoeboid protozoon, Acanthamoeba castellanii and non-fermentative yeast Candida parapsilosis. In mitochondria of these organisms, uncoupling protein activity is revealed not only by stimulation of state 4 respiration by free fatty acids accompanied by decrease in membrane potential (these effects being partially released by ATP and GTP) but mainly by lowering ADP/O ratio during state 3 respiration. Plant and microorganism uncoupling proteins are able to divert very efficiently energy from oxidative phosphorylation, competing for deltamicroH+ with ATP synthase. Functional connection and physiological role of uncoupling protein and alternative oxidase, two main energy-dissipating systems in plant-type mitochondria, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Morelli, Alessandro Maria, Silvia Ravera, Daniela Calzia, and Isabella Panfoli. "An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane." Open Biology 9, no. 4 (2019): 180221. http://dx.doi.org/10.1098/rsob.180221.

Full text
Abstract:
Understanding how biological systems convert and store energy is a primary purpose of basic research. However, despite Mitchell's chemiosmotic theory, we are far from the complete description of basic processes such as oxidative phosphorylation (OXPHOS) and photosynthesis. After more than half a century, the chemiosmotic theory may need updating, thanks to the latest structural data on respiratory chain complexes. In particular, up-to date technologies, such as those using fluorescence indicators following proton displacements, have shown that proton translocation is lateral rather than transversal with respect to the coupling membrane. Furthermore, the definition of the physical species involved in the transfer (proton, hydroxonium ion or proton currents) is still an unresolved issue, even though the latest acquisitions support the idea that protonic currents, difficult to measure, are involved. Moreover, F o F 1 -ATP synthase ubiquitous motor enzyme has the peculiarity (unlike most enzymes) of affecting the thermodynamic equilibrium of ATP synthesis. It seems that the concept of diffusion of the proton charge expressed more than two centuries ago by Theodor von Grotthuss is to be taken into consideration to resolve these issues. All these uncertainties remind us that also in biology it is necessary to consider the Heisenberg indeterminacy principle, which sets limits to analytical questions.
APA, Harvard, Vancouver, ISO, and other styles
6

Miranda-Astudillo, H. V., K. N. S. Yadav, E. J. Boekema, and P. Cardol. "Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis." Journal of Bioenergetics and Biomembranes 53, no. 3 (2021): 351–63. http://dx.doi.org/10.1007/s10863-021-09882-8.

Full text
Abstract:
AbstractIn vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
APA, Harvard, Vancouver, ISO, and other styles
7

Duan, Chen, and Duan. "Transcriptional Analysis of Chlorella Pyrenoidosa Exposed to Bisphenol A." International Journal of Environmental Research and Public Health 16, no. 8 (2019): 1374. http://dx.doi.org/10.3390/ijerph16081374.

Full text
Abstract:
Bisphenol A (BPA) is the raw material of 71% of polycarbonate-based resins and 27% of epoxy-based resins which are used for coating metal-based food and beverage cans. Meanwhile, it is taken into account as a typical environmental pollutant. Hormesis may occur in algae exposed to BPA. In this study, the effects of BPA on Chlorella pyrenoidosa were assessed based on growth inhibition and transcriptome analysis. We have focused on two exposure scenarios as follows: (1) exposure to a low stimulation concentration (0.1 mg.L−1, 19.35% promotion in cell density on the 3rd day); (2) exposure to a high inhibition concentration (10 mg.L−1, 64.71% inhibition in cell density on the 3rd day). Transcriptome analysis showed enrichment in nucleotide transport, single-organism transport, cellular respiration. Among them, adenosine triphosphate (ATP) synthase and Nicotinamide adenine dinucleotide (NADH) dehydrogenase were upregulated under 0.1 mg.L−1 BPA treatment. These changes enhanced the physiological and energy metabolic pathways of C. pyrenoidosa, thereby stimulating cell proliferation. At exposure to the high BPA, severe inhibited changes in the expression levels of several pathways were observed, which were related to tricarboxylic acid (TCA) cycle, glycolysis, fatty acid metabolism, oxidative phosphorylation, and photosynthesis. Therefore, BPA could negatively affect growth inhibition through the multiple energy metabolism processes. These results may result in a deeper insight into BPA-induced biphasic responses in algae, and provide vital information to assess the potential ecological risks of exposure to BPA in an aquatic ecosystem.
APA, Harvard, Vancouver, ISO, and other styles
8

Neupane, Prashant, Sudina Bhuju, Nita Thapa, and Hitesh Kumar Bhattarai. "ATP Synthase: Structure, Function and Inhibition." Biomolecular Concepts 10, no. 1 (2019): 1–10. http://dx.doi.org/10.1515/bmc-2019-0001.

Full text
Abstract:
AbstractOxidative phosphorylation is carried out by five complexes, which are the sites for electron transport and ATP synthesis. Among those, Complex V (also known as the F1F0 ATP Synthase or ATPase) is responsible for the generation of ATP through phosphorylation of ADP by using electrochemical energy generated by proton gradient across the inner membrane of mitochondria. A multi subunit structure that works like a pump functions along the proton gradient across the membranes which not only results in ATP synthesis and breakdown, but also facilitates electron transport. Since ATP is the major energy currency in all living cells, its synthesis and function have widely been studied over the last few decades uncovering several aspects of ATP synthase. This review intends to summarize the structure, function and inhibition of the ATP synthase.
APA, Harvard, Vancouver, ISO, and other styles
9

Kiirats, Olavi, Jeffrey A. Cruz, Gerald E. Edwards, and David M. Kramer. "Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase." Functional Plant Biology 36, no. 11 (2009): 893. http://dx.doi.org/10.1071/fp09129.

Full text
Abstract:
It was previously shown that photosynthetic electron transfer is controlled under low CO2 via regulation of the chloroplast ATP synthase. In the current work, we studied the regulation of photosynthesis under feedback limiting conditions, where photosynthesis is limited by the capacity to utilise triose-phosphate for synthesis of end products (starch or sucrose), in a starch-deficient mutant of Nicotiana sylvestris Speg. & Comes. At high CO2, we observed feedback control that was progressively reversed by increasing O2 levels from 2 to 40%. The activity of the ATP synthase, probed in vivo by the dark-interval relaxation kinetics of the electrochromic shift, was proportional to the O2-induced increases in O2 evolution from PSII (JO2), as well as the sum of Rubisco oxygenation (vo) and carboxylation (vc) rates. The altered ATP synthase activity led to changes in the light-driven proton motive force, resulting in regulation of the rate of plastoquinol oxidation at the cytochrome b6f complex, quantitatively accounting for the observed control of photosynthetic electron transfer. The ATP content of the cell decreases under feedback limitation, suggesting that the ATP synthesis was downregulated to a larger extent than ATP consumption. This likely resulted in slowing of ribulose bisphosphate regeneration and JO2). Overall, our results indicate that, just as at low CO2, feedback limitations control the light reactions of photosynthesis via regulation of the ATP synthase, and can be reconciled with regulation via stromal Pi, or an unknown allosteric affector.
APA, Harvard, Vancouver, ISO, and other styles
10

Galber, Chiara, Stefania Carissimi, Alessandra Baracca, and Valentina Giorgio. "The ATP Synthase Deficiency in Human Diseases." Life 11, no. 4 (2021): 325. http://dx.doi.org/10.3390/life11040325.

Full text
Abstract:
Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Photosynthesis; Phosphorylation; ATP synthase"

1

Turton, Janet Susan. "An investigation of chloroplast ATPase structure and function using anti-peptide antibodies." Thesis, Keele University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carr, M. D. "NMR studies of oxidative phosphorylation." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Redbird, Ruth Ann. "Identification of a protein kinase substrate in Sulfolobus solfataricus P2." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/26884.

Full text
Abstract:
Living organisms rely on many different mechanisms to adapt to changes within their environment. Protein phosphorylation and dephosphorylation events are one such way cells can communicate to generate a response to environmental changes. In the Kennelly laboratory we hope to gain insight on phosphorylation events in the domain Archaea through the study of the acidothermophilic organism Sulfolobus solfataricus. Such findings may provide answers into evolutionary relationships and facilitate an understanding of phosphate transfer via proteins in more elaborate systems where pathway disturbances can lead to disease processes. A λ-phage expression library was generated from S. solfataricus genomic DNA. The immobilized expression products were probed with a purified protein kinase, SsoPK4, and radiolabeled ATP to identify potential native substrates. A protein fragment of the ORF sso0563, the catalytic A-type ATPase subunit A (AtpA), was phosphorylated by SsoPK4. Full length and truncated forms of AtpA were overexpressed in E. coli. Additional subunits of the ATPase were also overexpressed and ATPase activity reconstituted in vitro. Phosphoamino acid analysis and MS identified the phosphorylation sites on AtpA. Several variants of AtpA were derived via site-directed mutagenesis and assayed for ATPase activity. Chemical cross-linking was employed to determine possible ATPase subunit interactions; tryptic digests of AtpA and its mutant variants were performed to examine protein folding. The phosphorylated-mimic variant of AtpA, T98D, resulted in an inactive ATPase complex as determined by ATPase activity assays and native-PAGE indicating potential phosphoregulation by SsoPK4 on enzyme activity. Ultimately, any findings would need verification with in vivo studies.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Paumard, Patrick. "Etude topologique et fonctionnelle des composantes additionnellles i, e et g de la F1F0-ATP synthase de la levure Saccharomyces cerevisiae : Rôle de l'ATP synthase dans la morphogénèse mitochondriale." Bordeaux 2, 2001. http://www.theses.fr/2001BOR28893.

Full text
Abstract:
Les phosphorylations oxydatives mitochondriales produisent 90 % de l'ATP en condition aérobies. La membrane interne de la mitochondrie se replie dans l'espace matriciel pour former des crêtes qui portent les complexes F1Fo-ATP synthases. Dans la levure, l'ATP synthase st composée d'au moins 20 sous-unités conduisant à la formation d'un complexe de 600 kDa et peut exister sous forme de dimère. Nous avons étudié l'environnement et la fonction de la sous-unité i (SUi), une petite protéine (7kDa) transmembranaire du secteur Fo. Une étude topologique a permis de montrer la proximité de SUi avec les sous*-unités 6, d, e, f, g et des protéines inconnues de 12, 20 et 33 kDa. SUi existe sous forme de dimères malgré une stoechiométrie de un dans le complexe. Une étude bioénergétique comparée de la souche de référence, d'une souche (delta)atp18 et de souches exprimant des versions tronquées de SUi a montré que l'extrémité C-terminale de SUi interagit fonctionnellement avec l'YMUC. L'ATP synthase pourrait ainsi, soit faire partie de l'YMUC, soit interagir fonctionnellement avec lui via SUi ou l'une de ses voisines toujours non identifiées. L'existence de dimères de SUi nous a amenés à étudier la dimérisation du complexe par BN PAGE. Cette étude a confirmé que la F1Fo-ATP synthase existe sous forme monomérique et dimérique. Nous avons également été en mesure d'identifier des espèces de plus fortes masses moléculaires apparentes qui pourraient correspondre à des formes oligomériques de l'enzyme. L'existence de ces formes dépend de la présence des sous-unités e et g. L'observation par microscopie électronique de cellules ne contenant pas ces sous-unités a montré que les mitochondries avaient des morphologies anormales et présentaient des structures en pelure d'oignon. Ces expériences sont les premières preuves biochimiques allant dans le sens de l'hypothèse énoncée paar ALLEN qui suggère que l'oligomérisation de l'ATP synthase serait une étape essentielle pour la formation des crêtes<br>Mitochondrial oxidative phosphorylations are responsible for the synthesis of 90 % of the ATP produced under aerobic conditions. Mitochondrial inner membrane folds inside the matrix to form structures called cristae that contain the F1 Fo-ATP synthase complexes. In yeast, ATP synthase is composed of at least 20 subunits leading to the formation of a 600 kDa complex and can exist as a dimer. We have investigated the environment and determined the possible role of the subunit i (SUi), a small (7kDa) non-essential transmembrane protein of the Fo sector with a N in C out orientation. Topoligical studies were performed with cross linking reagents that showed us the proximity of SUi with subunits 6, d, f, e, g and unknown proteins of 12, 20 a,d 33 kDa. By this method, we also demonstrated that SUi exists as a dimer despite its stoechiometry of one SUi per complex. A comparative bioenergetical study of a wild type strain, a (delta)atp18 strain and mutant strains that produce various C-terminal truncated SUi seems to functionally interact with YMUC. The F1 Fo-ATP synthase could either be part of YMUC or functionally interact with it through SUi and/or unknown proteins. The existence of SUi dimers led us to study the dimerisation state of the complex by BN PAGE. This study confirmed that F1 Fo-ATP synthase exists as monomeric and dimeric species. We were also able to identify higher molecular weight species that could correspond to oligomeric forms of the enzyme. The presence of such oligomeric forms depends on the presence of subunits e and g. Emectron microscopy studies of cells lacking SU e or g showed abnormal mitochondrial morphologies exhibiting multilamelar onion like structures. These experiments are the first biomedical evidences of ALLEN's hypothesis suggesting that F1 Fo-ATP synthase oligomerisation should be an essential step for in the process of cristae formation
APA, Harvard, Vancouver, ISO, and other styles
5

Kiirats, Olavi. "Co-regulation of the electron transport and carbon assimilation in C₃ and C₄4 plants the role of CF₀-CF₁ ATP synthase /." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Spring2009/o_kiirats_050909.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chaignepain, Stéphane. "Etude fonctionnelle et structurale de la sous-unité 4 de l'ATP synthase mitochondriale de la levure Saccharomyces Cerevisiae. Mise en évidence in vitro de l'interaction entre le domaine C-terminal de la sous-unité 4 et l'OSCP. Etude de l'organisation du pied de l'ATP synthase." Bordeaux 2, 1997. http://www.theses.fr/1997BOR28550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pelissier, Patrick. "Etude de mutants nucléaires modifiés dans l'expression de la synthèse mitochondriale des sous-unités 8 et 6 du secteur Fo de l'ATP synthase chez Saccharomyces cerevisiae." Bordeaux 2, 1994. http://www.theses.fr/1994BOR28306.

Full text
Abstract:
Ces travaux portent sur l'étude de mutants nucléaires de la levure S. Cerevisiae, modifiés dans la synthèse mitochondriale des sous-unités 8 et 6 de l'ATPsynthase, qui restent respiratoire-compétents. Ces souches sont modifiées dans la régulation de la synthèse de l'ATP par la concentration en phosphate externe. Ceci est dû à la modification de la stoechiométrie relative des sous-unités 8, 6 et 9 dont le résultat est une altération de la perméabilité aux protons de la membrane interne. Une analyse des transcrits mitochondriaux a permis de corréler cette baisse du taux protéique à une modification spécifique du cotranscrit ATP8-ATP6. Une analyse génétique des mutants a mis en évidence deux mutations nucléaires indépendantes toujours associées à une mutation mitochondriale, qui entraîne une sensibilité accrue à la paromomycine, un antibiotique qui augmente le taux d'erreurs au niveau traductionnel mitochondrial. Les séquences nucléotidiques de l'ARN ribosomique 15S et de l'ARN messager VAR1, deux composants des mitoribosomes codés par l'ADN mitochondrial, ont été étudiées : aucune différence n'a pu être mise en évidence entre les souches mutante et sauvage. Les deux gènes nucléaires mutés entraînent un phénotype de cryosensibilité sur substrat respiratoire seulement lorsqu'ils sont présents simultanément. Donc, les deux gènes sauvages ont été recherchés par complémentation fonctionnelle. Deux gènes nucléaires NCA2 et NCA3, impliqués dans l'expression spécifique des sous-unités 8 et 6 de l'ATP synthase, ont été isolés et séquencés. Aucune homologie significative avec des protéines connues n'a été identifiée dans les banques de données. NCA2 et NCA3 sont deux gènes monocopie qui codent respectivement pour des protéines de 70800 et 35400 Da. NCA2 est localisé sur le chromosome 16 et NCA3 sur le chromosome 4. Leur disruption au locus chromosomique ne conduit pas à une incompétence respiratoire<br>These works concerned the study of respiratory-competent nuclear mutants of the yeast S. Cerevisiae, altered in the mitochondrial synthesis of subunits 8 and 6 of the ATPsynthase. These strains are altered in the regulation of the ATP synthesis by the external phosphate concentration. It was due to a modification of the relative stoichiometry of the mt DNA-encoded 8, 6 and 9 subunits which results in an enhanced proton-leakage through the inner membrane. The mitochondrial transcripts has permitted to correlate the decrease in the subunits 6 and 8 ratio with a specific modification of cotranscript ATP8-ATP6. Genetic analysis of these mutants showed the presence of two unlinked mutations always associated with a mitochondrial mutation, which confered a paromomycin sensitivity, an inhibitor of the mitochondrial protein synthesis. The nucleic sequence of 15S rRNA and VAR1 mRNA, two components of mitoribosomes encoded by mitochondrial DNA, were studied : no difference exist between mutant and wild-type strains. The simultaneous presence of the two mutant nuclear genes induced a cryosensitive phenotype on a nonfermentable carbon source. Then, the two wild-type genes were cloned by functional complementation. Two nuclear genes NCA2 and NCA3, involved in the specific expression of subunits 8 and 6 of the ATPsynthase, were isolated and sequenced. No significant homologies with known proteins were identified in data bases. NCA2 and NCA3 are two single-copy genes which encode for proteins of molecular mass of 70800 and 35400 Da respectively. NCA2 is located on chromosome 16 and NCA3 on chromosome 4. A null mutation of each gene did not let to a respiratory-incompetent phenotype
APA, Harvard, Vancouver, ISO, and other styles
8

Razaka, Jolly Dominique. "Etude du couplage energétique de l'ATP (adenosine-5'-triphosphate) synthase mitochondriale de la levure Saccharomyces cerevisiae : analyse fonctionnelle d'un mutant construit par mutagenèse dirigée dans le secteur hydrophobe de la sous-unité 4." Bordeaux 2, 1993. http://www.theses.fr/1993BOR28271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buchet-Poyau, Karine. "Cellules humaines dépourvues d'ADN mitochondrial : métabolisme adaptatif et utilisation dans l'étude génétique des pathologies mitochondriales." Lyon 1, 1999. http://www.theses.fr/1999LYO10192.

Full text
Abstract:
Dans les cellules eucaryotes aerobies, l'energie provient essentiellement de l'atp synthetise par les phosphorylations oxydatives (oxphos) au niveau de l'atpase-atpsynthetase f0-f1. L'atp est alors exporte hors des mitochondries par le translocateur des nucleotides adenyliques (ant). Certaines sous-unites des complexes oxphos sont codees par l'adn mitochondrial (adnmt), les autres par l'adn nucleaire et importees dans les mitochondries par un mecanisme faisant intervenir le potentiel de membrane mitochondrial (pmm) etabli par les oxphos. Nous avons verifie que 2 lignees de cellules rho o humaines sont totalement depourvues d'adnmt, d'arn et de proteines codees par l'adnmt. Par contre, elles importent normalement des proteines d'origine nucleaire dans leurs mitochondries. Comment un pmm suffisant pour cette importation peut s'etablir dans les rho o en l'absence des oxphos ? nous avons montre que les rho o, depourvues des 2 sous-unites du facteur f0 de l'atpase-atpsynthetase codees par l'adnmt, ont un f1 assemble et fonctionnel pour hydrolyser de l'atp. De plus, 2 inhibiteurs specifiques de f1 (aurovertine) ou de l'ant (acide bongkrekique) reduisent la croissance et le pmm des rho o. Ainsi, la survie des rho o necessite un pmm suffisant maintenu par l'importation d'atp 4 cytosolique dans la mitochondrie par l'ant qui l'echange contre de l'adp 3 mitochondrial produit par l'atpase-f1. Nous avons egalement utilise les rho o pour determiner l'origine genetique de pathologies dues a un deficit d'un complexe oxphos. Les cellules de 3 patients atteints du syndrome de leigh avec deficit en cytochrome oxydase (cox) ont ete enucleees et fusionnees avec les rho o. L'activite cox etant restauree dans les cybrides, le deficit est localise sur l'adn nucleaire des patients. Par contre, la fusion a ete inutilisable pour determiner l'origine d'un deficit en complexe iii. En effet, le deficit est rapidement perdu dans les lymphocytes en culture suggerant un defaut heteroplasmique de l'adnmt.
APA, Harvard, Vancouver, ISO, and other styles
10

Soubannier, Vincent. "La sous-unité 4 dans le second pied de la F1F0-ATP synthase de la levure Saccharomyces cerevisiae : Etude topologique de cette sous-unité et son implication dans le processus de dimérisation / oligomérisation de l'enzyme." Bordeaux 2, 2002. http://www.theses.fr/2002BOR20976.

Full text
Abstract:
La F1-Fo-ATP synthase est un complexe protéique mitochondrial composé d'au moins vingt sous-unités chez la levure Saccharomyces cerevsiae. Cette enzyme présente des organisations supra-moleculaires correspondant à des formes dimériques. La sous-unité 4(b) est la composante essentielle du second pied de la F1Fo-ATP synthase qui relie le domaine catalytique F1 au domaine protonophorique membranaire Fo. Afin de décrire l'organisation du second pied de l'ATP synthase, l'environnement protéique de la sous-unité 4 a été exploré grâce à des pontages chimiques utilisant un agent pontant hétéro-bifonctionnel. Cette étude topologique a mis en évidence différents rapports de voisinage avec d'autres sous-unités : l'extrémité N-terminale de la sous-unité 4 est à proximité de la sous-unité g, tandis que la région C-terminale est au voisinage des sous-unités h, d, β, et OSCP. Le voisinage entre le résidu C-terminal de la sous-unité 4 et la sous-unité OSCP laissait envisager que l'extrémité C-terminale dela sous-unité 4 constituait une zone d'interaction avec la sous-unité OSCP. Les dix derniers résidus de la sous-unité 4 sont essentiels à l'assemblage entre les secteurs F1 et Fo. Aussi l'environnement protéique de ces dix derniers résidus de la sous-unité 4 a été étudié grâce à des pontages chimiques utilisant des agents pontant homo-et hétéro-bifonctionnels. Cette étude topologique a permis de préciser que cette zone de xconnexion entre les secteurs F1 et Fo serait composée au moins des sous-unités 4, OSCP, h et α. Enfin, nous avons cherché à établir le rôle que pouvait jouer le premier segment transmembranaire des sous-unités 4 (b) mitochondriales qui est absent dans les sous-unités b procaryotiques et chloroplastiques. Nos études ont montré que cette région N-terminale additionnelle n'est pas indispensable auu fonctionnement de la F1Fo ATP synthase et que sa perte n'altère pas non plus les phosphorylations oxydatives. Par contre, la perte du premier segment transmembranaire de la sous-unité 4 aboutit à la perte d'assemblage de la sous-unité g. La sous-unité g étant indispensable à la dimérisation/oligomérisation de l'enzyme, l'ATP synthase n'est alors plus capable de se dimériser ni de s'oligomériser. L'altération de la morphologie des crêtes mitochondriales est une autre conséquence de la perte d'assemblage de la sous-unité g, l'oligomérisation de l'ATP synthase étant essentielle à la formation des crêtes. Ces observations suggèrent que le premier segment transmembranaire de la sous-unité 4 constitue une zone d'interaction avec le segment transmembranaire de la sous-unité g.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Photosynthesis; Phosphorylation; ATP synthase"

1

Sherwood, Dennis, and Paul Dalby. The bioenergetics of living cells. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0024.

Full text
Abstract:
Living systems create order, and appear to break the Second Law. This chapter explains, and resolves, this apparent paradox, drawing on the concept of coupled reactions (as introduced in Chapters 13 and 16), as mediated by ‘energy currencies’ such as ATP and NADH. The chapter then examines the key energy-capturing systems in biological systems – glycolysis and the citric acid cycle, and also photosynthesis. Topics covered include how energy is captured in the conversion of glucose to pyruvate, the mitochondrial membrane, respiration, electron transport, ATP synthase, chloroplasts and thylakoids, photosystems I and II, and the light-independent reactions of photosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Jancura, Daniel, and Erik Sedlák. Bioenergetika. Univerzita Pavla Jozefa Šafárika, Vydavateľstvo ŠafárikPress, 2021. http://dx.doi.org/10.33542/be2021-0022-6.

Full text
Abstract:
Prekladaný vysokoškolský učebný text „Bioenergetika“ by mal slúžiť ako úvod do problematiky štúdia v oblasti bioenergetiky. Táto vedná oblast je v súčasnosti vysoko aktuálna, pretože výsledky získané bioenergetickým výskumom v uplynulých rokoch zreteľne ukazujú, že bioenergetické procesy prebiehajúce v živých systémoch neslúžia “len” na transformáciu energie, ale ovplyvňujú aj priebeh procesov ako sú apoptóza, starnutie, vznik a rozvoj mnohých ochorení (predovšetkým neurodegeneratívnych). Tieto skutočnosti jednoznačne naznačujú potrebu existencie kvalitných učebných textov, ktoré by prijateľným spôsobom umožnili študentom získať potrebné informácie a vedomosti v tejto vednej discipline. Z vyššie uvedených dôvodov sme sa rozhodli vytvoriť tieto učebné texty, ktoré sú vo forme desiatich samostatných kapitol, ktoré však na seba prirodzene a logicky nadväzujú. Jedna kapitola predstavuje v podstate jednu prednášku v rámci kurzu Bioenergetiky, ktorý je realizovaný na Prírodovedeckej fakulte Univerzity Pavla Jozefa Šafárika v Košiciach na magisterskom a doktorandskom stupni študijného programu „Biofyzika“. Zároveň tieto texty môžu poslúžiť aj pri výučbe v študijnom predmete Biochémia, ktorý je prednášaný v bakalárskych a magisterských stupňoch študijných programov “Biochémia” resp. “Biofyzika”. Dovoľujeme si vyjadriť presvedčenie, že tieto učebné texty by mohli byť istým spôsobom nápomocné aj vedeckým pracovníkom pracujúcim v oblasti výskumu týkajúcho sa problematiky transformáci energie v biologických organizmoch a fenoménoch spojených s touto transformáciou. V týchto učebných textoch sú postupne uvádzané poznatky týkajúce sa základných konceptov bioenergetiky, mechanizmov procesov ako sú glykolýza a Krebsov cyklus (okrem podrobného a uceleného popis týchto procesov je tu uvedený aj všeobecný náhľad o prepojenosti týchto procesov ako aj ich začlenenie do kompaktného pohľadu na celkový proces transformácie energie v biologických organizmoch), zloženia štruktúry a funkčnosti biologických membrán (táto oblast je nevyhnutná pre lepšie pochopenie poznatkov, ktoré sú uvedené v nasledujúcich kapitolách). V nasledujúcich kapitolách sa učebný text zaoberá popisom štruktúry a funkcie mitochondrií, pričom veľký dôraz je dávaný na popis vlastností a mechanizmov fungovania štyroch komplexov dýchacieho reťazca a ATP-syntázy. Tieto komplexy vytvárajú podmienky pre existenciu “najdôležitejšieho” bioenergetického procesu, oxidatívnej fosforylácie. V záverečných dvoch kapitolách sú uvedené mechanizmy procesov vytvárajúcich fotosyntézu, jej svetlej aj tmavej fázy. Sú tu relevantné informácie o tomto “druhom” najdôležitejšom bioenergetickom procese prebiehajúcom v mnohých biologických organizmoch a poskytujúcom možnosť transformácie enrgie elektromagnetického žiarenia na energiu “ukrytú” v chemických väzbách určitých chemických molekúl. Chceme vyjadriť naše presvedčenie, že predložené učebné texty “Bioenergetika” budú dobrým “pomocníkom a inšpirátorom” pre mnohých študentov, ktorí sa budú chcieť dozvedieť čo najviac o fascinujúcich štruktúrach a mechanizmoch umožňujúcich transformáciu energie v živých systémoch, bez ktorej by nebola možná existencia života ako ho poznáme. Želáme príjemné a podnetné čítanie a štúdium. URL: www.unibook.upjs.sk The textbook "Bioenergetics" should serve as an introduction to the study of bioenergetics. This field of science is currently highly actual, as the results of the bioenergetics research in recent years clearly show that bioenergetics processes in living systems can "serve" not only to transformation of energy, but also affect the course of processes such as apoptosis, aging, origin and development of many diseases (especially neurodegenerative). These facts clearly indicate the need for the existence of quality teaching texts that would allow students to acquire the necessary information and knowledge in this scientific discipline in an acceptable way. For the above mentioned reasons, we decided to create these textbooks, which are in the form of ten chapters, which naturally and logically follow each other. One chapter basically presents one lecture within the course of Bioenergetics, which is realized at the Faculty of Science of the Pavel Jozef Šafárik University in Košice at the master's and doctoral degree of the study program "Biophysics". At the same time, these texts can also be used for teaching in the study subject Biochemistry, which is taught in the bachelor's and master's degree programs of the study programs "Biochemistry" resp. “Biophysics”. We would like to express our conviction that these textbooks could in some way also help researchers working in the field of the energy transformation in biological organisms and the phenomena associated with this transformation. These textbooks present knowledge about the basic concepts of bioenergetics, the mechanisms of processes such as glycolysis and the Krebs cycle (in addition to a detailed and comprehensive description of these processes, there is also a general view of the interconnectedness of these processes and their incorporation into a compact view of the overall energy transformation in biological organisms), the structure and functionality of biological membranes (this area is necessary for a better understanding of the knowledge presented in the following chapters). In the following chapters, the textbook deals with the description of the structure and function of mitochondria, with great emphasis on the properties and mechanisms of functioning of the four complexes of the respiratory chain and ATP-synthase. These complexes create the basis for the existence of the "most important" process in bioenergetics, oxidative phosphorylation. In the final two chapters, the mechanisms of the processes that produce photosynthesis, its light and dark phases, are presented. There is relevant information about this "second" most important bioenergetics process taking place in many biological organisms and providing the possibility of transforming the energy of electromagnetic radiation into energy "hidden" in the chemical bonds of certain chemical molecules. We want to express our conviction that the textbooks "Bioenergetics" will be a good "helper and inspirer" for many students who want to learn as much as possible about the fascinating structures and mechanisms for energy transformation in living systems, without which it would not be possible existence of life as we know it.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photosynthesis; Phosphorylation; ATP synthase"

1

Malyan, Alexander N. "The Structure and Regulation of Chloroplast ATP Synthase." In Photosynthesis. John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119084150.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robinson, Joseph D. "Oxidative Phosphorylation: F1, F0F1, and ATP Synthase." In Moving Questions. Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4614-7600-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rumberg, Bernd, and Oliver Pänke. "Kinetic Analysis of Rotary F0F1-ATP Synthase." In Photosynthesis: Mechanisms and Effects. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kellner, E., T. Licher, and H. Lill. "The Coupling Regions of F0F1 ATP Synthase." In Photosynthesis: Mechanisms and Effects. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Labahn, A., and P. Gräber. "Uni-Site ATP Hydrolysis Catalyzed by the ATP-Synthase from Chloroplasts." In Current Research in Photosynthesis. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spetzler, David, Robert Ishmukhametov, Tassilo Hornung, et al. "Energy Transduction by the Two Molecular Motors of the F1Fo ATP Synthase." In Photosynthesis. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1579-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Böttcher, B., U. Lücken, E. J. Boekema, and P. Gräber. "On the Structure of the ATP-Synthase from Chloroplasts." In Current Research in Photosynthesis. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Junge, Wolfgang. "ATP Synthase: Electro-Chemical Transducer with Stepping Rotatory Mechanics." In Photosynthesis: Mechanisms and Effects. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, T., and S. V. Ponomarenko. "Biochemical Characteristics of the Chloroplast ATP Synthase from Cereals." In Photosynthesis: Mechanisms and Effects. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curtis, Stephanie E. "Structure, organization and expression of cyanobacterial ATP synthase genes." In Molecular Biology of Photosynthesis. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2269-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography