Academic literature on the topic 'Phycobilisom'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phycobilisom.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phycobilisom"

1

Sarcina, Mary, Mark J. Tobin, and Conrad W. Mullineaux. "Diffusion of Phycobilisomes on the Thylakoid Membranes of the CyanobacteriumSynechococcus7942." Journal of Biological Chemistry 276, no. 50 (2001): 46830–34. http://dx.doi.org/10.1074/jbc.m107111200.

Full text
Abstract:
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranesin vivo. The unicellular cyanobacteriumSynechococcussp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. InSynechococcus7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 × 10−10cm2s−1at 30 °C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexesin vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.
APA, Harvard, Vancouver, ISO, and other styles
2

Westermann, Martin, Wolfgang Reuter, Christine Schimek, and Werner Wehrmeyer. "Presence of Both Hemidiscoidal and Hemiellipsoidal Phycobilisomes in a Phormidium Species (Cyanobacteria)." Zeitschrift für Naturforschung C 48, no. 1-2 (1993): 28–34. http://dx.doi.org/10.1515/znc-1993-1-206.

Full text
Abstract:
Hemidiscoidal and hemiellipsoidal phycobilisomes have been determined in cells of the complementary chromatically adapting cyanobacterium Phormidium sp. C86 . They could be isolated from red and green light-adapted cells, respectively. Hemidiscoidal red light phycobilisomes show molar pigment ratios of allophycocyanin: phycocyanin of 1:4.5 with phycoerythrin lacking. Hemiellipsoidal phycobilisomes induced by green light present allophycocyanin: phycocyanin: phycoerythrin ratios of 1:1:6.8. The differences between the two phycobilisome types could additionally be demonstrated by their ultrastructure and sedimentation values. Isolated red light phycobilisomes have six rods, show dimensions of 70×30×15nm and a sedimentation value of 66 S whereas green light phycobilisomes are nearly twice larger. They contain ten rods and present dimensions of 70×40×25nm and a sedimentation value of 98 S. The number of phycobilisomes in red light cells is almost twice as large as in green light cells. There is evidence that cells grown under white light contain both types as well as “intermediate” forms.
APA, Harvard, Vancouver, ISO, and other styles
3

Fălămaș, Alexandra, Sebastian A. Porav, and Valer Tosa. "Investigations of the Energy Transfer in the Phycobilisome Antenna of Arthrospira platensis Using Femtosecond Spectroscopy." Applied Sciences 10, no. 11 (2020): 4045. http://dx.doi.org/10.3390/app10114045.

Full text
Abstract:
Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.
APA, Harvard, Vancouver, ISO, and other styles
4

Puzorjov, Anton, and Alistair J. McCormick. "Phycobiliproteins from extreme environments and their potential applications." Journal of Experimental Botany 71, no. 13 (2020): 3827–42. http://dx.doi.org/10.1093/jxb/eraa139.

Full text
Abstract:
Abstract The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment–proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
APA, Harvard, Vancouver, ISO, and other styles
5

Krauspe, Vanessa, Matthias Fahrner, Philipp Spät, et al. "Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria." Proceedings of the National Academy of Sciences 118, no. 5 (2021): e2012277118. http://dx.doi.org/10.1073/pnas.2012277118.

Full text
Abstract:
Phycobilisomes are the major pigment–protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin β-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.
APA, Harvard, Vancouver, ISO, and other styles
6

Dolganov, Nadia, та Arthur R. Grossman. "A Polypeptide with Similarity to Phycocyanin α-Subunit Phycocyanobilin Lyase Involved in Degradation of Phycobilisomes". Journal of Bacteriology 181, № 2 (1999): 610–17. http://dx.doi.org/10.1128/jb.181.2.610-617.1999.

Full text
Abstract:
ABSTRACT To optimize the utilization of photosynthate and avoid damage that can result from the absorption of excess excitation energy, photosynthetic organisms must rapidly modify the synthesis and activities of components of the photosynthetic apparatus in response to environmental cues. During nutrient-limited growth, cyanobacteria degrade their light-harvesting complex, the phycobilisome, and dramatically reduce the rate of photosynthetic electron transport. In this report, we describe the isolation and characterization of a cyanobacterial mutant that does not degrade its phycobilisomes during either sulfur or nitrogen limitation and exhibits an increased ratio of phycocyanin to chlorophyll during nutrient-replete growth. The mutant phenotype was complemented by a gene encoding a polypeptide with similarities to polypeptides that catalyze covalent bond formation between linear tetrapyrrole chromophores and subunits of apophycobiliproteins. The complementing gene, designated nblB, is expressed at approximately the same level in cells grown in nutrient-replete medium and medium devoid of either sulfur or nitrogen. These results suggest that the NblB polypeptide may be a constitutive part of the machinery that coordinates phycobilisome degradation with environmental conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Ulloa, Osvaldo, Carlos Henríquez-Castillo, Salvador Ramírez-Flandes, et al. "The cyanobacterium Prochlorococcus has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean." Proceedings of the National Academy of Sciences 118, no. 11 (2021): e2025638118. http://dx.doi.org/10.1073/pnas.2025638118.

Full text
Abstract:
Marine picocyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean, where they exert a profound influence on elemental cycling and energy flow. The use of transmembrane chlorophyll complexes instead of phycobilisomes as light-harvesting antennae is considered a defining attribute of Prochlorococcus. Its ecology and evolution are understood in terms of light, temperature, and nutrients. Here, we report single-cell genomic information on previously uncharacterized phylogenetic lineages of this genus from nutrient-rich anoxic waters of the eastern tropical North and South Pacific Ocean. The most basal lineages exhibit optical and genotypic properties of phycobilisome-containing cyanobacteria, indicating that the characteristic light-harvesting antenna of the group is not an ancestral attribute. Additionally, we found that all the indigenous lineages analyzed encode genes for pigment biosynthesis under oxygen-limited conditions, a trait shared with other freshwater and coastal marine cyanobacteria. Our findings thus suggest that Prochlorococcus diverged from other cyanobacteria under low-oxygen conditions before transitioning from phycobilisomes to transmembrane chlorophyll complexes and may have contributed to the oxidation of the ancient ocean.
APA, Harvard, Vancouver, ISO, and other styles
8

Gómez-Lojero, Carlos, Bertha Pérez-Gómez, Gaozhong Shen, Wendy M. Schluchter, and Donald A. Bryant. "Interaction of Ferredoxin:NADP+Oxidoreductase with Phycobilisomes and Phycobilisome Substructures of the CyanobacteriumSynechococcussp. Strain PCC 7002†." Biochemistry 42, no. 47 (2003): 13800–13811. http://dx.doi.org/10.1021/bi0346998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peng, Pan-Pan, Liang-Liang Dong, Ya-Fang Sun, et al. "The structure of allophycocyanin B fromSynechocystisPCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes." Acta Crystallographica Section D Biological Crystallography 70, no. 10 (2014): 2558–69. http://dx.doi.org/10.1107/s1399004714015776.

Full text
Abstract:
Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] fromSynechocystissp. PCC 6803 at 1.75 Å resolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Å in diameter with an internal cavity of 1.1 × 106 Å3. While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax= 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.
APA, Harvard, Vancouver, ISO, and other styles
10

Coelho, L., J. Prince, and T. G. Nolen. "Processing of defensive pigment in Aplysia californica: acquisition, modification and mobilization of the red algal pigment, r-phycoerythrin by the digestive gland." Journal of Experimental Biology 201, no. 3 (1998): 425–38. http://dx.doi.org/10.1242/jeb.201.3.425.

Full text
Abstract:
The marine snail Aplysia californica obtains its purple defensive ink exclusively from the accessory photosynthetic pigment r-phycoerythrin, which is found in the red seaweeds of its diet. The rhodoplast digestive cell, one of three types of cell lining the tubules of the digestive gland, appears to be the site of catabolism of red algal chloroplasts (rhodoplasts) since thylakoid membranes, including phycobilisome-sized membrane-associated particles, were found within the large digestive vacuoles of this cell. Immunogold localization showed that there was a statistically significant occurrence of the red algal phycobilisome pigment r-phycoerythrin within these rhodoplast digestive vacuoles, but not in other compartments of this cell type (endoplasmic reticulum, mitochondria, nucleus) or in other tissues (abdominal ganglion). Immunogold analysis also suggested that the rhodoplast vacuole is the site for additional modification of r-phycoerythrin, which makes it non-antigenic: the chromophore is either cleaved from its biliprotein or the biliprotein is otherwise modified. The hemolymph had spectrographic absorption maxima typical of the protein-free chromophore (phycoerythrobilin) and/or r-phycoerythrin, but only when the animal had been feeding on red algae. Rhodoplast digestive cells and their vacuoles were not induced by the type of food in the diet: snails fed green seaweed and animals fed lettuce had characteristic rhodoplast cells but without the large membranous inclusions (rhodoplasts) or phycobilisome-like granules found in animals fed red seaweed. Two additional cell types lining the tubules of the digestive gland were characterized ultrastructurally: (1) a club-shaped digestive cell filled with electron-dense material, and (2) a triangular 'secretory' cell devoid of storage material and calcium carbonate. The following model is consistent with our observations: red algal rhodoplasts are freed from algal cells in the foregut and then engulfed by rhodoplast digestive cells in the tubules of the digestive diverticula, where they are digested in membrane-bound vacuoles; r-phycoerythrin is released from phycobilisomes on the rhodoplast thylakoids and chemically modified before leaving the digestive vacuole and accumulating in the hemolymph; the pigment then circulates throughout the body and is concentrated in specialized cells and vesicles of the ink gland, where it is stored until secreted in response to certain predators.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phycobilisom"

1

Bienert, Ralf. "Strukturuntersuchungen an Proteinen der bakteriellen Stressantwort: NblA von Anabaena sp. PCC 7120 und Csp:ssDNA-Komplexe von Bacillus caldolyticus und Bacillus subtilis." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98270626X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ughy, Bettina. "Phycobilisome assembly in Synechocystis sp. Strain PCC6803." Paris 11, 2005. http://www.theses.fr/2005PA112252.

Full text
Abstract:
Dans les cyanobactéries, des complexes macromoléculaires appelés phycobilisomes (PBS) collectent l'énergie lumineuse pour la photosynthèse. Le PBS de Synechocystis PCC6803 est constitué d'un centre composé d'allophycocyanine (AP) duquel rayonnent six bâtonnets composés de phycocyanine (PC). Dans ces structures, les linkers (polypeptides de liaison) assurent l'assemblage des phycobiliprotéines (AP et PC) et modulent leurs propriétés de façon à optimiser le transfert d'énergie. Les deux gènes cpcG codent le linker LRC qui relie les bâtonnets au centre. Nous avons montré que ces deux gènes étaient transcrits puis en créant des inactivations de l'un ou de l'autre, nous avons trouvé que seul cpcG1 a une fonction dans le PBS. Le gène cpcG2 est donc un pseudogène transcrit. Les autres sous unités des bâtonnets (PC et autres linkers, les LR) sont codées dans l'opéron cpc. Le rôle de chaque LR a été étudié par mutagenèse de deux gènes cpcC codants ces linkers. L'analyse de la composition des PBS issus de ces mutants nous a ainsi révélé l'épistasie de cpcC2 sur cpcC1, témoin de leur rôle spécifique et séquentiel dans l'assemblage des bâtonnets. L'analyse de trois mutants allèliques de cpcC2 a montré l'effet polaire des cassettes utilisées (aphI, aadA) sur les transcriptions de l'opéron cpc. Par ailleurs, deux isoformes de la ferredoxine﷓NADP(H)﷓oxidoréductase (FNR), enzyme qui catalyse la production du NADPH, sont détectées dans Synechocystis PCC6803 : l'une de 46 kDa, associée au PBS et l'autre de 34 kDa, soluble. Nous avons montré, par mutagenèse, que ces isoformes étaient produites par des sites d'initiations de traduction différents à partir du gène unique petH codant la FNR<br>In cyanobacteria a large pigment-protein complex, called phycobilisome (PBS) harvests light energy for photosynthesis. The PBS of the cyanobacterium Synechocystis sp. Strain PCC6803, the target of our investigations, consists of a three-cylindrical core from which six rods radiate. Linker polypeptides assemble phycobiliproteins within these structures and optimize light absorption and energy transfer. In this strain two genes encode the rod-core linker (LRC). First of all we showed that these two genes were transcribed then by the inactivation of one or the other, we found that only the cpcG1 encoded a functional LRC. The remaining PBS-rod-subunits are encoded in the cpc operon. We generated and characterized interposon mutants in the three rod-linker genes of Synechocystis PCC6803. CpcC1 encoding the 33-kDa linker was found to be epistatic to cpcC2 encoding the 30-kDa linker, indicating a specific and sequential role for each of these two linkers in rod growth. Three allelic mutants affecting cpcC2 revealed a polar effect of commonly used gene cassettes (aphI, aadA) on the operon's steady-state transcripts and an effect of rod linker availability on the amount of phycocyanin incorporated in the PBS. In addition, two isoforms of the ferredoxin-NADP(H)-oxidoreductase (FNR), which catalyzes electron transfer between ferredoxin and NADP(H), were detected in Synechocystis PCC6803: a 46. 3-kDa isoform that is associated to the PBS and a soluble 34. 3-kDa isoform. We showed that these FNR isoforms were the products of different translation initiation sites of petH, the FNR encoding gene
APA, Harvard, Vancouver, ISO, and other styles
3

Emlyn-Jones, Daniel. "A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis PCC 6803." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jallet, Denis. "Interactions between the Orange Carotenoid Protein and the phycobilisomes in cyanobacterial photoprotection." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00946742.

Full text
Abstract:
Too much light can be lethal for photosynthetic organisms. Under such conditionsharmful reactive oxygen species are generated at the reaction center level. Cyanobacteria havedeveloped photoprotective mechanisms to avoid this. One of them relies on the solubleOrange Carotenoid Protein (OCP) that binds a ketocarotenoid (hydroxyechinenone, hECN).Under strong blue-green illumination, OCP gets photoconverted from an orange inactive form(OCPo) to a red active one (OCPr). OCPr interacts with phycobilisomes, the majorcyanobacterial light harvesting antennae, and triggers heat dissipation of the excess lightenergy collected by these gigantic pigment-protein complexes. Consequently, excitationpressure on reaction centers and fluorescence emission decrease.OCPr binds to phycobilisome cores, containing mainly chromophorylated proteins ofthe allophycocyanin (APC) family. I constructed Synechocystis PCC 6803 mutants affected insome minor APC forms (ApcD, ApcF and ApcE). These special APCs play the role ofterminal emitters, i.e. funnel light energy to Chlorophyll a. Strong-blue green illuminationtriggered normal OCP-related fluorescence quenching in all mutant cells. The fluorescencedecrease induced by Synechocystis OCP in vitro was similar when using phycobilisomesisolated from wild-type or mutant cells. These results demonstrated that the terminal emittersare not needed for interaction with the OCP and they strongly suggested that OCPr interactswith one of the major APC forms of the phycobilisome core.Phycobilisomes containing 2, 3 or 5 APC cylinders per core were isolated fromdifferent cyanobacterial strains. Synechocystis and Arthrospira OCPs were purified from overexpressingSynechocystis mutant strains. I then performed in vitro OCP/phycobilisomeinteraction studies. The number of APC cylinders per core had no clear influence on theamount of fluorescence quenching. Both OCPs behaved very differently, one appearing muchmore species-specific than the other. Structure-based hypotheses were emitted to explain suchdissimilarity.Arthrospira OCP N-terminal and C-terminal domains were separated throughproteolysis. The isolated N-terminal domain retained a bound carotenoid, which displayedsimilar conformation than in OCPr. This isolated N-terminal domain triggered importantphycobilisome fluorescence quenching even under dark conditions. In contrast, the isolated Cterminaldomain attached no pigment and had no visible effect on phycobilisome emission. Itwas then proposed that only the N-terminal domain of OCP is implied in interactions withphycobilisomes. The C-terminal domain modulates its activity.
APA, Harvard, Vancouver, ISO, and other styles
5

Bernard, Cécile. "Mise en evidence d'une repartition nucleoplastidiale des sites de biosynthese des constituants du phycobilisome d'une algue rouge : rhodella violacea." Paris 6, 1993. http://www.theses.fr/1993PA066023.

Full text
Abstract:
Le phycobilisome de l'algue rouge unicellulaire rhodella violacea, presente une organisation intermediaire entre celle des phycobilisomes de cyanobacterie et celle de phycobilisomes des algues rouges pluricellulaires. Ces relations structurales qui peuvent etre mises en parallele avec la phylogenie, ont ete abordees a un niveau genomique chez r. Violacea. La synthese des differents constituants du phycobilisome a lieu dans le compartiment plastidial. Celle des polypeptides de liaison associes a la phycoerythrine (sous-unites gamma) est cytoplasmique. Les genes specifiant les polypeptides du phycobilisome de r. Violacea ont ete localises. Les sequences des genes specifiant pour les sous-unites alpha (rpea) et beta (rpeb) de la phycoerythrine ont ete determinees et presentent une forte homologie avec les sous-unites de la phycoerythrine deja decrites chez les cyanobacteries, les rhodophytes et les cryptophytes. La principale difference avec les genes cyanobacteriens correspondants est l'existence d'une sequence intronique partageant le gene repb en deux exons. Les analyses transcriptionnelles montrent que les deux genes rpe sont cotranscrits et que l'espece majoritaire d'arnm est depourvue de l'intron. Ces travaux mettent en evidence une complementarite entre les genomes plastidial et nucleaire pour la synthese des constituants du phycobilisome d'une algue rouge r. Violacea. Cette coordination est interessante d'un point de vue phylogenique ou une structure macromoleculaire de type cyanobacterien (le phycobilisome) ayant garde la plupart des caracteristiques de l'endosymbionte ancestral, a evolue vers une regulation de type eucaryotique de la synthese de ses constituants
APA, Harvard, Vancouver, ISO, and other styles
6

Hicks, Kali. "Characterization of Slr1098, a Protein with Similarity to the Bilin Lyase Subunit CpcE from the Cyanobacterium Synechocystis sp. PCC 6803." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/979.

Full text
Abstract:
The goal of this research is to investigate the role of the slr1098 gene in the cyanobacterium Synechocystis sp. PCC 6803, a gene with similarity to cpcE which encodes a subunit of an enzyme involved in bilin attachment to phycocyanin. This protein is hypothesized to be involved in oligomerization of phycocyanin due to previous results showing the mutant made shorter phycocyanin rods. The recombinant Slr1098 protein was produced and purified from E. coli cells. Binding assays showed interaction between Slr1098 and both apo- and holo-phycocyanin, but not to apo-allophycocyanin. Slr1098 blocked bilin addition at Cys-82 on CpcB by the CpcS/CpcU bilin lyase. Size exclusion chromatography and sucrose density gradient analysis of complexes formed suggest that Slr1098 strongly interacts with all intermediate forms of phycocyanin and may be an important checkpoint in the biosynthesis and oligomerization of this protein, but that by itself, Slr1098 does not increase oligomerization of phycocyanin.
APA, Harvard, Vancouver, ISO, and other styles
7

Kronfel, Christina M. "Characterization of cpeY and cpeZ mutants in Fremyella diplosiphon strain UTEX 481." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1642.

Full text
Abstract:
Phycoerythrin (PE) present on the outer phycobilisome (PBS) rods in Fremyella diplosiphon contains covalently attached phycoerythrobilin (PEB) chromophores for efficient photosynthetic light capture. Chromophore ligation on phycobiliprotein subunits occurs through bilin lyase catalyzed reactions. The cpeY and cpeZ genes in F. diplosiphon were shown to attach PEB on alph-82 of PE. To better understand the individual functions of cpeY and cpeZ in native cyanobacteria, we characterized PBS and PE purified from cpeY and cpeZ deletion mutants and compared them with wild type (WT). Both cpeY and cpeZ mutants generated much less PE than WT as well as assembling much less PE into the PBS. PE purified from cpeY mutant had phycocyanobilin on alpha-PE in place of PEB. The mutation of cpeZ affected the biosynthesis and accumulation of beta-PE with a red-shifted absorbance compared to WT PE. CpeY was shown to function as a bilin lyase, and CpeZ possibly functions as a chaperone.
APA, Harvard, Vancouver, ISO, and other styles
8

Six, Christophe. "Les antennes photosynthétiques des organismes marins picophytoplanctoniques des genres Ostreococcus et Synechococcus : structure et photoacclimatation." Paris 6, 2005. http://hal.upmc.fr/tel-01118134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garnier, Florence. "Architecture et assemblage du phycobilisome chez une cyanobacterie, spirulina maxima, et une rhodophycee, rhodella violacea. Regulation par les facteurs de l'environnement." Paris 6, 1995. http://www.theses.fr/1995PA066331.

Full text
Abstract:
Au cours de ce travail, nous avons etabli la composition moleculaire du phycobilisome de la cyanobacterie spirulina maxima et nous proposons un modele structural. Les travaux menes en parallele chez la rhodophycee unicellulaire rhodella violacea, nous ont permis de montrer que ces deux organismes developpent lorsqu'ils sont soumis a une variation de l'intensite lumineuse, le meme type de reponse au niveau de leur antenne photocollectrice. Une forte augmentation de la quantite de lumiere affecte la composition polypeptidique de l'antenne. Les modifications induites entrainent la perte de l'hexamere terminal (phycocyanine chez spirulina maxima et phycoerythrine chez rhodella violacea) concomitante a celle du polypeptide de liaison associe. Le niveau du controle de cette regulation a ete precise par une etude genomique. L'analyse transcriptionnelle des genes codant pour les sous-unites alpha et beta de la phycobiliproteine peripherique, exprimes dans les cellules soumises a des flux lumineux d'intensite differente, montre l'existence de modes de regulation transcriptionnel chez rhodella violacea (sans toutefois exclure la possibilite d'un controle post-transcriptionnel) et post-transcriptionnel chez spirulina maxima. Nous decrivons enfin dans ce travail, l'existence d'une association specifique de trois nouvelles proteines (p#4#7, p#3#0 et p#2#9) avec le phycobilisome de spirulina maxima en fonction de l'intensite lumineuse. Ces proteines ne sont ni des contaminants, ni des produits de degradation de composes preexistants au sein du phycobilisome. Les proteines p#4#7 et p#3#0 ont fait l'objet d'une investigation plus precise. Ce sont des polypeptides que l'on retrouve associes plus specifiquement aux phycobilisomes en forte lumiere. Ces deux proteines sont egalement presentes en grande quantite dans le pool des proteines solubles ; leur synthese n'est pas augmentee de maniere significative lors d'un stress lumineux ou thermique. Nous avons montre l'existence d'une asso ciation transitoire de p#4#7, lors de l'assemblage des constituants du phycobilisome en faible lumiere, association qui devient permanente en forte lumiere. Par ailleurs, seule la fraction de p#4#7 associee aux phycobilisomes presente une grande affinite pour l'atp, propriete specifique qui la rapproche de la classe des proteines chaperons. La fonction de proteine chaperon que nous proposons pour p#4#7 doit etre confirmee par des etudes ulterieures. Toutefois, les caracteristiques fonctionnelles deja observees different sensiblement de celles des proteines de stress decrites jusqu'a maintenant (une possible stabilite de la liaison entre la p#4#7 et ses proteines cibles du phycobilisome). Une proteine immunologiquement apparentee a p#4#7 de spirulina maxima, a ete egalement detectee non seulement chez d'autres cyanobacteries, mais aussi chez des algues eucaryotes phycobiliproteines (rhodophycees et cryptophycees). La proteine p#4#7 semble donc etre specifique des organismes a phycobiliproteines. L'association de la proteine p#3#0 avec les phycobilisomes est specifiquement induite par la forte lumiere. Les variations de temperature n'ont aucun impact. Lors de la carence azotee, dans les conditions ou les projections radiaires subissent une proteolyse progressive, la quantite de p#3#0 associee aux phycobilisomes augmente graduellement. Ceci indique que p#3#0 developpe une association specifique avec le cur de la particule. En revanche, des resultats preliminaires montrent que l'association p#4#7-phycobilisome implique preferentiellement les composants de la peripherie (phycocyanine). Nous proposons pour la proteine p#4#7, un role stabilisateur dans la structure du phycobilisome de spirulina maxima, dans des conditions de stress (forte lumiere, choc thermique,). Elle pourrait alors fonctionner comme une proteine chaperon atypique. La fonction de la proteine p#3#0, sans affinite pour l'atp mais etroitement liee aux phycobilisomes en forte lumiere ainsi qu'en carence azotee, doit etre precisee plus avant. L'ensemble de ces observations etaie l'hypothese que nous proposons de l'intervention des proteines p#4#7 et p#3#0 dans l'assemblage et/ou la stabilisation des composants du phycobilisome chez spirulina maxima, mettant ainsi en cause le principe jusqu'alors couramment admis d'auto-assemblage des phycobilisomes
APA, Harvard, Vancouver, ISO, and other styles
10

Neudeck, Michelle Joan. "Tolerance of Planktothrix agardhii to nitrogen depletion." Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522329471601801.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phycobilisom"

1

Lüder, Ulrike H. Acclimation of the photosynthetic apparatus of the endemic Antarctic red macroalga Palmaria decipiens to seasonally changing light conditions =: Akklimatisation des Photosyntheseapparates der endemisch antarktischen roten Makroalge Palmaria decipiens an saisonal wechselnde Lichtbedingungen. Alfred-Wegener-Institut für Polar- und Meeresforschung, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cockcroft, Alix Rowena. Composition of phycobilisomes from a marine cyanobacterium and effect on them of nitrogen starvation. typescript, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phycobilisom"

1

Marx, Ailie, Liron David, and Noam Adir. "Piecing Together the Phycobilisome." In The Structural Basis of Biological Energy Generation. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8742-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sidler, Walter A. "Phycobilisome and Phycobiliprotein Structures." In The Molecular Biology of Cyanobacteria. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0227-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grossman, Arthur R., Lorraine G. van Waasbergen, and David Kehoe. "Environmental Regulation of Phycobilisome Biosynthesis." In Light-Harvesting Antennas in Photosynthesis. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2087-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ohki, Kaori, and Yoshihiko Fujita. "Non-Hemidiscoidal Phycobilisome in Cyanophytes." In Progress in Photosynthesis Research. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wehrmeyer, Werner. "Phycobilisomes: Structure and function." In Cell Walls and Surfaces, Reproduction, Photosynthesis. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48652-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adir, Noam, Monica Dines, Merav Klartag, Ailie McGregor, and Meira Melamed-Frank. "Assembly and Disassembly of Phycobilisomes." In Microbiology Monographs. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/7171_020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holzwarth, A. R. "Energy-Transfer Kinetics in Phycobilisomes." In Antennas and Reaction Centers of Photosynthetic Bacteria. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82688-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mimuro, Mamoru, Hiroto Kikuchi, and Akio Murakami. "Structure and Function of Phycobilisomes." In Concepts in Photobiology. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4832-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zilinskas, Barbara A., and Dawn A. Howell. "Comparative Immunology of the Phycobilisome Linker Polypeptides." In Progress in Photosynthesis Research. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Marsac, Nicole Tandeau. "Phycobiliproteins and phycobilisomes: the early observations." In Discoveries in Photosynthesis. Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3324-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phycobilisom"

1

Zlenko, Dmitry V., Pavel M. Krasilnikov, and Igor N. Stadnichuk. "Interaction of the orange carotenoid protein with the phycobilisome core and fluorescence recovery protein." In 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2015. http://dx.doi.org/10.1109/bibe.2015.7367693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Assefa, Gonfa Tesfaye, Tjaart P. J. Krüger, and Michal Gwizdala. "Impact of the intensity threshold on binary switching analysis in single molecule spectroscopy of phycobilisomes." In Single Molecule Spectroscopy and Superresolution Imaging XIV, edited by Ingo Gregor, Rainer Erdmann, and Felix Koberling. SPIE, 2021. http://dx.doi.org/10.1117/12.2583009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Falamas, Alexandra, Sebastian Alin Porav, Nicolae Dragos, and Valer Tosa. "Investigations of the Energy Transfer in the Phycobilisome Antenna of Arthrospira Plantesis Using Time Resolved Absorption and Fluorescence Spectroscopy." In International Conference on Ultrafast Phenomena. OSA, 2020. http://dx.doi.org/10.1364/up.2020.m4b.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phycobilisom"

1

Gindt, Yvonne Marie. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10151568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gindt, Y. M. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/6544151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography