Academic literature on the topic 'Physical and mechanical wood properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physical and mechanical wood properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physical and mechanical wood properties"
Glukhikh, Viktor, Pavel Buryndin, Artyem Artyemov, Andrei Savinovskih, Pavel Krivonogov, and Anna Krivonogova. "Plastics: physical-and-mechanical properties and biodegradable potential." Foods and Raw Materials 8, no. 1 (February 26, 2020): 149–54. http://dx.doi.org/10.21603/2308-4057-2020-1-149-154.
Full textKim, Kwang-Mo, Jung-Hwan Park, Byoung-Soo Park, Dong-Won Son, Joo-Saeng Park, Wun-Sub Kim, Byoung-Nam Kim, and Sang-Ro Shim. "Physical and Mechanical Properties of Heat-treated Domestic Yellow Poplar." Journal of the Korean Wood Science and Technology 38, no. 1 (January 25, 2010): 17–26. http://dx.doi.org/10.5658/wood.2010.38.1.17.
Full textHwang, Jung-Woo, and Seung-Won Oh. "Physical and Mechanical Properties of Board Made from Carbonized Rice Husk." Journal of the Korean Wood Science and Technology 45, no. 1 (January 25, 2017): 62–71. http://dx.doi.org/10.5658/wood.2017.45.1.62.
Full textSalles Ferro, Fabiane, Amós Magalhães Souza, Isabella Imakawa de Araujo, Milena Maria Van Der Neut de Almeida, André Luis Christoforo, and Francisco Antonio Rocco Lahr. "Effect of Alternative Wood Species and First Thinning Wood on Oriented Strand Board Performance." Advances in Materials Science and Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/4603710.
Full textAcosta, Andrey Pereira, Jalel Labidi, Henrique Römer Schulz, Ezequiel Gallio, Kelvin Techera Barbosa, Rafael Beltrame, Rafael de Avila Delucis, and Darci Alberto Gatto. "Thermochemical and Mechanical Properties of Pine Wood Treated by In Situ Polymerization of Methyl Methacrylate (MMA)." Forests 11, no. 7 (July 17, 2020): 768. http://dx.doi.org/10.3390/f11070768.
Full textKolář, Tomáš, and Michal Rybníček. "Physical and mechanical properties of subfossil oak (Quercus, sp.) wood." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 58, no. 4 (2010): 123–34. http://dx.doi.org/10.11118/actaun201058040123.
Full textChoi, Chul, Cho-Rong Yuk, Ji-Chang Yoo, Jae-Young Park, Chang-Goo Lee, and Seog-Goo Kang. "Physical and Mechanical Properties of Cross Laminated Timber Using Plywood as Core Layer." Journal of the Korean Wood Science and Technology 43, no. 1 (January 25, 2015): 86–95. http://dx.doi.org/10.5658/wood.2015.43.1.86.
Full textYoue, Won-Jae, Soo-Min Lee, Sung-Suk Lee, and Yong Sik Kim. "Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite." Journal of the Korean Wood Science and Technology 44, no. 3 (May 25, 2016): 406–14. http://dx.doi.org/10.5658/wood.2016.44.3.406.
Full textIswanto, Apri Heri, Arida Susilowati, Irawati Azhar, Riswan Riswan, Supriyanto Supriyanto, Joel Elpinta Tarigan, and Widya Fatriasari. "Physical and Mechanical Properties of Local Styrax Woods from North Tapanuli in Indonesia." Journal of the Korean Wood Science and Technology 44, no. 4 (July 25, 2016): 539–50. http://dx.doi.org/10.5658/wood.2016.44.4.539.
Full textHong, Nam-Euy, Kyung-Rok Won, Byung-Oh Yoo, Su-Young Jung, Byung-Ro Kim, and Hee-Seop Byeon. "Physical and Mechanical Properties of Quercus glauca Thunberg according to Forest Stand Characteristics." Journal of the Korean Wood Science and Technology 44, no. 5 (September 25, 2016): 767–75. http://dx.doi.org/10.5658/wood.2016.44.5.767.
Full textDissertations / Theses on the topic "Physical and mechanical wood properties"
Kirkpatrick, John Warren. "Mechanical and physical properties of preservative-treated strandboard." Master's thesis, Mississippi State : Mississippi State University, 2005. http://sun.library.msstate.edu/ETD-db/ETD-browse/browse.
Full textParedes, Heller Juan Jacobo. "The Influence of Hot Water Extraction on Physical and Mechanical Properties of OSB." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/ParedesJJ2009.pdf.
Full textAnderson, Scott Powell. "Wood fiber reinforced bacterial biocomposites effects of interfacial modifers and processing on mechanical and physical properties /." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/S_Anderson_100507.pdf.
Full textNaderi, Nader. "Influence of the planing on the physical, mechanical and gluing properties of wood." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ39378.pdf.
Full textLi, Junqiu. "Physical and Mechanical Properties of Medite® MDF Exterior from Acetylated Wood Fibers." Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76444.
Full textSkyba, Oleksandr. "Durability and physical properties of thermo-hygro-mechanically (THM)-densified wood /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17855.
Full textQi, Hucheng. "Leaching, hydration and physical-mechanical properties of spent chromated copper arsenate (CCA)-treated wood-cement composites." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58808.pdf.
Full textCARVALHO, GILBERTO. "Aplicação da radiação gama na determinação de parâmetros físicos em madeiras." reponame:Repositório Institucional do IPEN, 2013. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10603.
Full textMade available in DSpace on 2014-10-09T14:01:46Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Ashaduzzaman, Md. "Physico-mechanical and decay resistance properties of bio-resin modified wood." Thesis, Bangor University, 2014. https://research.bangor.ac.uk/portal/en/theses/physicomechanical-and-decay-resistance-properties-of-bioresin-modified-wood(f4588ffc-250d-4f89-95f5-8f9ea381dba7).html.
Full textCrafford, Philippus Lodewicus. "An investigation of selected mechanical and physical properties of young, unseasoned and finger-jointed Eucalyptus grandis timber." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80072.
Full textENGLISH ABSTRACT: South Africa is a timber scarce country that will most probably experience a shortage of structural timber in the near future. In this study the concept of using young finger‐jointed Eucalyptus grandis timber was evaluated for possible application in roof truss structures while the timber is still in the green, unseasoned state. 220 finger‐jointed boards of cross‐sectional dimension 48 x 73 mm and 36 x 111 mm timber, cut from 5‐18 year old Eucalyptus grandis trees were obtained from Limpopo province, South Africa. The boards were manufactured using a polyurethane (PU) adhesive at moisture content levels above fibre saturation point and no drying was performed. The objectives of this study were to determine various mechanical and physical properties of this finger‐jointed product. More specifically (1) to determine the strength and stiffness potential of the product in the wet and the dry condition, (2) to evaluate physical properties such as density, warp, checking and splitting, (3) to evaluate potential indicator properties to be used as structural grading parameters, and (4) to compare the flexural properties to the current SA pine resource and SANS structural grade requirements. The boards were divided into two groups of the same size, which constituted the wet and the dry samples. Each sample was further separated into six different groups for testing the different strength and stiffness properties. The dry group was stacked in a green‐house for nine weeks until equilibrium moisture content was reached. Afterwards selected physical properties such as warp, checking and splitting were assessed. Destructive testing was conducted on the boards and the results were used to determine various mechanical properties. Finally, each board was assessed for density and moisture content (MC) values. The study showed that the young finger‐jointed Eucalyptus grandis timber had very good flexural properties. Both mean modulus of elasticity (MOE) and modulus of rupture (MOR) 5th percentile strength values for wet and dry boards complied with the current SANS 10163‐1 (2003) requirements for grade S7.The values of tensile perpendicular to grain and compression perpendicular to grain strength did not conform to SANS requirements for grade S5. The other strength properties for the wet and dry groups complied with one of the three SANS structural grades. The 5 year old (48 x 73 mm) boards’ showed significantly higher levels of twist and checking compared to 11 year old boards of the same dimension. Only 46.3% of the finger‐jointed products conformed to the density requirements in SANS 1783‐2 (2004) for grade S7. There was a significant difference in density between the three age groups (5, 11 and 18 years) presented in this study. The variation in both MOE and MOR values of the fingerjointed product proved to be significantly lower in comparison to currently used SA pine sources. Based on the results from this study the concept of producing roof trusses from wet, unseasoned and finger‐jointed young Eucalyptus grandis timber has potential. However, additional research on a number of issues not covered in this study is still required for this product including full scale truss evaluations, proof grading, PU adhesive evaluation at elevated temperatures, nail plate load capacity, and the possible need for chemical treatment of the product against Lyctus beetles.
AFRIKAANSE OPSOMMING: Suid Afrika is ‘n land wat waarskynlik ‘n tekort aan strukturele hout sal ervaar in die nabye toekoms. In hierdie studie word die gebruik van jong gevingerlasde Eucalyptus grandis hout vir die moontlike gebruik in dakstrukture, terwyl nat en ongedroog, ondersoek. 220 gevingerlasde planke van deursnit 48 x 73 mm en 36 x 111 mm gesaag van 5‐18 jaar‐oue Eucalyptus grandis bome en afkomstig van die Limpopo provinsie in Suid Afrika, is gebruik. Die produk is vervaardig met poli‐uretaan (PU) lym uit planke met vog inhouds vlakke bo veselversadigingspunt. Die doelwit van hierdie studie was om verskeie meganiese en fisiese eienskappe van die vingerlas produk vas te stel. Meer spesifiek (1) om die sterkte en modulus van elastisiteit (MOE) potensiaal van die vingerlas produk in die nat en droë toestand te analiseer, (2) om die fisiese eienskappe soos digtheid, vervorming, oppervlakbarse en spleting te ondersoek, (3) om potensiële graderingsparameters te evalueer, en (4) om die buigeienskappe van die produk te vergelyk met SA dennehout asook die SANS strukturele graad vereistes. Die planke is verdeel in twee groepe, ‘n nat groep en ‘n droë groep. Elke groep is verder verdeel in ses kleiner groepe soos buig, trek en drukmonsters. Die droë groep was in ‘n kweekhuis geplaas vir nege weke totdat veselversadigingspunt bereik is. Daarna is geselekteerde fisiese eienskappe soos vervorming, oppervlak barse en spleting gemeet. Destruktiewe toetsing is uitgevoer op die planke en die resultate was gebruik om verskeie meganiese eienskappe vas te stel. Laastens is elke plank se digtheid en voggehalte gemeet. Die studie het getoon dat die jong gevingerlasde Eucalyptus grandis hout goeie buigeienskappe het. Beide die gemiddelde MOE en buig sterkte 5de persentiel waardes van die nat en droë groep het voldoen aan die huidige SANS 10163‐1 (2003) vereistes vir graad S7. Die sterkte‐eienskappe van loodregte trekkrag en loodregte druk het nie die vereistes vir SANS graad S5 gemaak nie. Die ander sterkte‐eienskappe van die nat en droë groep het voldoen aan een van die drie SANS strukturele graadvereistes. Die 5 jaar‐oue (48 x 73 mm ) planke het beduidend hoër vlakke van draai‐trek en oppervlakbarste getoon as die 11 jaar‐oue planke van dieselfe dimensie. Slegs 46.3% van die vingerlas produk het voldoen aan digtheidsvereistes vir SANS graad S7. Daar was ‘n beduidende verskil in dightheid tussen die drie ouderdomsgroepe (5, 11 en 18 jaar). Die MOE en buigsterkte‐waardes van die Biligom produk het beduidend laer variasie as huidige SA denne houtbronne getoon. Die resultate verkry in die studie toon dat die konsep om dakkappe te vervaardig van nat, gevingerlasde jong Eucalyptus grandis hout die potensiaal het om suksesvol toegepas te word. Bykomende navorsing oor ‘n aantal faktore wat nie in hierdie studie ingesluit is nie word steeds benodig. Dit sluit in ‘n volskaalse dakkap evaluasie, proefgradering, PU lym evaluasie by hoë temperature, spykerplaat ladingskapasiteit en die moontlike noodsaaklikheid van chemiese behandeling van die produk teen Lyctus kewers, insluit.
Books on the topic "Physical and mechanical wood properties"
Treacy, Mary. A comparison of mechanical and physical wood properties: Of a range of Sitka spruce provenances. Dublin: COFORD, 2000.
Find full textShukla, N. K. Physical and mechanical properties of woods and tested at the Forest Research Institute. Dehra Dun: Indian Council of Forestry Research and Education, 1991.
Find full textKettunen, P. O. Wood structure and properties. Uetikon-Zuerich: Trans Tech Publications Ltd., 2006.
Find full textBelin-Ferré, Esther. Mechanical properties of complex intermetallics. Singapore: World Scientific, 2011.
Find full textRowell, Roger M. Treatments that enhance physical properties of wood. Madison, WI: Forest Products Laboratory, 1987.
Find full textRowell, Roger M. Treatments that enhance physical properties of wood. Madison, WI: Forest Products Laboratory, 1987.
Find full textPhysical properties of plant and animal materials: Structure, physical characteristics, and mechanical properties. 2nd ed. New York: Gordon and Breach, 1986.
Find full textVirginia Polytechnic institute and State University. Dept. of Wood Science & Forest Products., ed. Wood--influence of moisture on physical properties. [Blacksburg, VA]: Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, 1995.
Find full textonline, Woodhead publishing, ed. Effect of mechanical and physical properties on fabric hand. Boca Raton: CRC, 2005.
Find full textJamani, Kifah Dafi. Some physical and mechanical properties of elastomeric impression materials. Birmingham: University of Birmingham, 1987.
Find full textBook chapters on the topic "Physical and mechanical wood properties"
Schniewind, Arno P. "Physical and Mechanical Properties of Archaeological Wood." In Archaeological Wood, 87–109. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1990-0225.ch004.
Full textClair, Bruno, and Bernard Thibaut. "Physical and Mechanical Properties of Reaction Wood." In The Biology of Reaction Wood, 171–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-10814-3_6.
Full textRahman, M. R., J. C. H. Lai, and S. Hamdan. "Studies on the Physical, Mechanical, Thermal and Morphological Properties of Impregnated Furfuryl Alcohol-co-Glycidyl Methacrylate/Nanoclay Wood Polymer Nanocomposites." In Wood Polymer Nanocomposites, 257–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65735-6_14.
Full textMengeloğlu, Fatih, and Vedat Çavuş. "Long Term Natural Weathering of PP Based WPCs: The Effect of TiO2 on Selected Color, Physical, Mechanical, Morphological and Chemical Properties." In Wood Polymer Composites, 213–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1606-8_11.
Full textRahman, M. R., S. Hamdan, and J. C. H. Lai. "Physico-mechanical, Morphological, and Thermal Properties of Clay Dispersed Styrene-co-Maleic Acid Impregnated Wood Polymer Nanocomposites." In Wood Polymer Nanocomposites, 179–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65735-6_10.
Full textRahman, M. R., J. C. H. Lai, and S. Hamdan. "Acrylonitrile/Butyl Methacrylate/Halloysite Nanoclay Impregnated Sindora Wood Polymer Nanocomposites (WPNCs): Physico-mechanical, Morphological and Thermal Properties." In Wood Polymer Nanocomposites, 237–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65735-6_13.
Full textRahman, M. R., J. C. H. Lai, and S. Hamdan. "Nanoclay Dispersed Furfuryl Alcohol-co-Ethyl Methacrylate Wood Polymer Nanocomposites: The Enhancement on Physico-mechanical and Thermal Properties." In Wood Polymer Nanocomposites, 275–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65735-6_15.
Full textRahman, M. R., S. Hamdan, and J. C. H. Lai. "Physico-Mechanical, Thermal, and Morphological Properties of Styrene-co-3-(Trimethoxysilyl)Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites." In Wood Polymer Nanocomposites, 219–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65735-6_12.
Full textBeg, M. D. H., and K. L. Pickering. "Recycling and Its Effects on the Physical and Mechanical Properties of Wood Fibre Reinforced Polypropylene Composites." In Advances in Composite Materials and Structures, 497–500. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.497.
Full textKumar, Satish, and Kamini Kohli. "Chemical Modification of Wood: Reaction with Thioacetic Acid and its Effect on Physical and Mechanical Properties and Biological Resistance." In Renewable-Resource Materials, 147–60. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2205-4_13.
Full textConference papers on the topic "Physical and mechanical wood properties"
Bas, Gamze Sultan, Erol Sancaktar, and Erdal Karadurmus. "Physical Properties of LLDPE and PP Filled With Wood Flours." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-48059.
Full textZashikhina, Inga. "EXPERIMENTAL RESEARCH ON PHYSICAL-MECHANICAL PROPERTIES OF WOOD FROM DRYING-OUT FORESTS." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019v/1.4/s03.042.
Full textAntons, Andis, Dace Cirule, Anrijs Verovkins, and Edgars Kuka. "Effect of thermal treatment on physical and mechanical properties of birch and pine wood." In Research for Rural Development, 2018. Latvia University of Life Sciences and Technologies, 2018. http://dx.doi.org/10.22616/rrd.24.2018.012.
Full textSydenstricker Flores-Sahagun, Thais Helena, Kelly Priscila Agapito, ROSA MARIA JIMENEZ AMEZCUA, and Felipe Jedyn. "PREPARATION AND CHARACTERIZATION OF REPROCESSED COMPOSITES OF POLYPROPYLENE REINFORCED BY WOOD FIBERS: PHYSICAL AND MECHANICAL PROPERTIES." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-1636.
Full text"Effect of Preservation and Moisture Content Change on Physical and Mechanical Properties of Different Wood Species." In 2nd International Conference on Research in Science, Engineering and Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0314591.
Full textMai, John, Jordan Girdis, Gwénaëlle Proust, Andy Dong, and Sandra Löschke. "Shades of Wood: The Effects of Temperature Variation on the Appearance and Physical and Mechanical Properties of 3D Printed Wood-Plastic Composites." In 5th Annual International Conference on Architecture and Civil Engineering (ACE 2017). Global Science & Technology Forum (GSTF), 2017. http://dx.doi.org/10.5176/2301-394x_ace17.45.
Full textSuryono, Joko, and Yudi Pranoto. "Influence of Lamina Wood on the Physical Properties, the Nature of Mechanics, the Strong Class on the Combination of Sengon Wood and Merbau Wood." In 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/aer.k.210810.020.
Full textSheng, Chan Kok, H. B. Senin, S. Hamdan, H. B. Senin, G. Carini, J. B. Abdullah, and D. A. Bradley. "Mechanical Properties of Malaysian Cengal Wood as Dried Sample and Under Fiber Saturated Point." In CURRENT ISSUES OF PHYSICS IN MALAYSIA: National Physics Conference 2007 - PERFIK 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2940645.
Full textAlzebdeh, Khalid I., Mahmoud M. A. Nassar, and Nasr Al-Hinai. "Development of New Eco-Composites From Natural Agro-Residues and Recycled Polymers." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23536.
Full textLandis, Eric N. "X-Ray Microtomography Applications to Heterogeneous Materials." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62467.
Full textReports on the topic "Physical and mechanical wood properties"
Rowell, Roger M., and Peggy Konkol. Treatments that enhance physical properties of wood. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1987. http://dx.doi.org/10.2737/fpl-gtr-55.
Full textHansen, F. D., and K. D. Mellegard. Physical and mechanical properties of degraded waste surrogate material. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/653935.
Full textEngle, Katie Jo, and Hang Liu. Study on Physical and Mechanical Properties of Agricultural Netting Products. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1398.
Full textGrobner, P. J. Determination of physical and mechanical properties of copper-clad molybdenum sheet. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/10161192.
Full textGrobner, P. J. Determination of physical and mechanical properties of copper-clad molybdenum sheet. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/7048768.
Full textGraves, George A. Workshop on the Physical and Mechanical Properties of Alloys: Semiconductors and Beyond. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada200793.
Full textJackson, T. B., S. Y. Limaye, and W. D. Porter. The effects of thermal cycling on the physical and mechanical properties of [NZP] ceramics. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/102179.
Full textCarroll, Mark C. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1168626.
Full textKnab, L. I., and J. R. Clifton. Mechanical and physical properties of coquina stone from the Castillo de San Marcos National Monument. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3714.
Full textStrizak, Joe P., Timothy D. Burchell, and Will Windes. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1030608.
Full text