Academic literature on the topic 'Physical Metallurgy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physical Metallurgy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physical Metallurgy"
Haasen, Peter, and J. M. Galligan. "Physical Metallurgy." Journal of Engineering Materials and Technology 109, no. 2 (April 1, 1987): 176. http://dx.doi.org/10.1115/1.3225960.
Full textHarris, Jack, John W. Martin, and Edward A. Little. "‘Physical metallurgy’." Materials Science and Technology 13, no. 8 (August 1997): 705–6. http://dx.doi.org/10.1179/mst.1997.13.8.705.
Full textJ. Raub, Christoph. "Physical metallurgy." Journal of Alloys and Compounds 261, no. 1-2 (September 1997): 313. http://dx.doi.org/10.1016/s0925-8388(97)00183-7.
Full textGreenwood, G. W. "Modern physical metallurgy." International Materials Reviews 30, no. 1 (January 1985): 302. http://dx.doi.org/10.1179/imr.1985.30.1.302.
Full textGreenwood, G. W. "Modern physical metallurgy." British Corrosion Journal 20, no. 3 (January 1985): 104. http://dx.doi.org/10.1179/000705985798272803.
Full textHarris, J. "Engineering metallurgy: Part 1 Applied physical metallurgy." International Materials Reviews 39, no. 5 (January 1994): 213–14. http://dx.doi.org/10.1179/imr.1994.39.5.213.
Full textVan Tendeloo, Gustaaf. "Advances in physical metallurgy." Materials Research Bulletin 32, no. 5 (May 1997): 633. http://dx.doi.org/10.1016/s0025-5408(97)00016-0.
Full textGonser, U. "Perspectives in physical metallurgy." Hyperfine Interactions 68, no. 1-4 (April 1992): 71–82. http://dx.doi.org/10.1007/bf02396453.
Full textYurioka, Nobutaka. "Advances in Physical Metallurgy and Processing of Steels. Physical Metallurgy of Steel Weldability." ISIJ International 41, no. 6 (2001): 566–70. http://dx.doi.org/10.2355/isijinternational.41.566.
Full textBanya, Shiro. "Physical chemistry of extractive metallurgy." Bulletin of the Japan Institute of Metals 26, no. 7 (1987): 656–60. http://dx.doi.org/10.2320/materia1962.26.656.
Full textDissertations / Theses on the topic "Physical Metallurgy"
Zhu, Yao-Hua. "Physical metallurgy of Zn-Al based alloys." Thesis, Aston University, 2006. http://publications.aston.ac.uk/21803/.
Full textPeters, Michael Andrew. "The physical metallurgy of β/β' NiTi/Ni₂TiAl alloys." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624799.
Full textQuariguasi, Netto Pedro Gutemberg. "Mathematical and physical modelling of a single-belt casting process." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0016/NQ44560.pdf.
Full textKim, Hyoungbae 1969. "Physical modelling of two phase flows in ladle-shroud systems." Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20914.
Full textMiner modification of the nozzle (skewed nozzle) to impart a radial component of velocity to the spinning vortex core was found to be effective in making AMEPA system sensitive to early slag entrainment phenomena by diverting the core away from the central vertical axis of the nozzle.
A 0.75 scale water model was constructed to simulate the flow of liquid steel through a ladle shroud in the presence of gas infiltration. It was found that the ladle shroud slag detector could be temporarily 'blinded' by gas bubbles or permanently blinded by a standing submerged gas jet.
Verhelst, Dominic. "Physical modelling of gas stirred metallurgical reactors containing two liquids." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59908.
Full textFor low energy input systems, it was found that the thickness of the second liquid phase can significantly affect the mixing time of the bulk phase by altering the fluid flow pattern of the liquid. The entrainment of the upper phase into the lower phase was also affected by the thickness of the upper phase, as well as by the intensity of bath agitation. At low flowrates, the number density of entrained droplets was constant with time, increasing with increasing agitation and thickness of the layer. The air flow required for the transition in the entrainment behaviour increased with an increase in the thickness of the upper phase.
Ray, Shamik. "On the application of physical and mathematical modeling to predict tundish performance." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66779.
Full textRÉSUMÉDans les procédés de coulées continu, les paniers répartiteurs ne servent pas seulement comme interface tampons, mais aussi comme un réacteur efficace pour raffiner l'acier. Les paniers répartiteurs modernes sont maintenant conçus pour effectuer différentes opérations métallurgiques comme la séparation des inclusions et leur flottation, l'ajustement fin de la nuance, le contrôle de la température de surfusion, la modification des inclusions par ajout de calcium et l'uniformisation de la température.Pour y arriver efficacement, l'écoulement du fluide dans le panier joue un rôle majeur. Il est maintenant prouvé que l'ajout de différents systèmes pour modifier les écoulements peut altérer les patrons d'écoulement dans le panier et en changer significativement la performance. Due aux conditions d'opérations difficiles, des investigations par expérimentation directe sont très difficiles. Pour cette raison la modélisation physique et mathématique est largement utilisée pour étudier la performance des paniers répartiteurs. Des paramètres comme la «Distribution des temps de résidence (RTD)», la dispersion d'éléments traceurs, le champ de vélocité, la séparation des inclusions, etc. sont largement utilisés pour étudier et prédire les performances d'un panier. L'entrainement du laitier, quoiqu'un problème vital lors du changement de creuset, a pourtant reçu moins d'attention. Dans cette recherche, le but est de développer une méthodologie de modélisation physique et mathématique pour étudier et prédire la performance d'un panier répartiteur de douze tonnes de forme triangulaire à quatre jets de coulée. Un modèle aquatique de grandeur nature fut étudié physiquement et mathématiquement. Le phénomène d'entrainement de laitier durant les opérations de changement de creuset fut utilise comme paramètre clé pour quantifier la performance du panier. La$
Moon, Ki-Hyeon. "Physical and mathematical modeling of a metal delivery system for a single belt caster." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84868.
Full textA three-chamber type tundish comprising an entry chamber, a head control chamber and an output chamber was designed to provide clean metal and strips of uniform thickness across the width of the belt. An output chamber proved to be essential for removing the bubbles and for obtaining a uniform film of water on the substrate by preventing strong hydraulic jump. The output chamber had to be completely closed for rapid bubble removal. For rapid filling of the output chamber at start up, the starting stopper proved to be essential. The 3-hole type nozzle, proved to be more effective for removing the bubbles, was found to have problems in terms of strongly impinging jet flow and non-uniform lateral velocities.
Using mathematical modeling and full scale water modeling, including PIV measurements, the "FD" type nozzle, which had a multi channel flow modifier in the output chamber and a slot type inlet nozzle, was found to be the best in terms of rapid bubble removal and uniform distribution of flow. This was achieved by a dramatic reduction in the strength of the vertically impinging flow towards the belt. However, this "FD" type nozzle generated a dead zone near the triple point within the output chamber. To remove the dead zone, a gently sloped shape insulator was inserted between the tundish back wall and the belt.
Lewis, David. "Physical and electronic structure studies of CuZn and CuPd alloys." Thesis, University of Liverpool, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367165.
Full textGateaud, Arnaud. "Physical and chemical mechanisms of lubricant removal during stage I of the sintering process." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-040606-161143/.
Full textNickoletopoulos, Nicholas. "Physical and numerical modeling of steel wire rod fracture during upsetting for cold heading operations." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37796.
Full textThe physical model was a Drop Weight Test with a guided pocket-die set capable of approximating industrial cold heading conditions. The results show that the test is sensitive to the critical parameters for cold heading. These include surface quality, residual element level, nitrogen content, microstructure, decarburization, and specimen geometry. The test is capable of assessing the fracture behavior of cold heading materials.
One goal of the study was to reveal differences in fracture behavior with varying steel sources. Accordingly, the matrix of test materials consisted of grade 1038 steels from three different steel sources.
Material preparation and conditioning of test materials approximated industrial procedures for cold heading materials. These procedures included hot rolling, controlled rod cooling, descaling, straightening, lime coating and lubricating, and wire drawing. Spheroidization of test specimens was performed in an industrial batch furnace using an industrial heat treatment cycle.
A finite element program (FEM) enabled the simulation of upsetting in cold heading. The inputs required to model the cold heading process include flow stress behavior and friction conditions representative of cold heading. These inputs were obtained using the CANMET Cam Plastometer and the Friction Ring Test.
The Cockcroft and Latham fracture constants for an as-rolled and a spheroidize annealed 1038 material were computed by FEM modeling and the critical values were calibrated using the Drop Weight Test. The fracture criterion constant was found to be independent of strain path for upsetting in cold heading and thus is material-related.
Books on the topic "Physical Metallurgy"
Haasen, P. Physical metallurgy. 3rd ed. Cambridge: Cambridge University Press, 1996.
Find full textHosford, William F. Physical metallurgy. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full text1924-, Cahn R. W., and Haasen P, eds. Physical metallurgy. 4th ed. Amsterdam: North-Holland, 1996.
Find full textHaasen, P. Physical metallurgy. 2nd ed. Cambridge [Cambridgeshire]: Cambridge University Press, 1986.
Find full textHaasen, P. Physical metallurgy. 2nd ed. Cambridge: Cambridge University Press, 1986.
Find full textReed-Hill, Robert E. Physical metallurgy principles. 3rd ed. Boston, Mass: PWS, 1994.
Find full textReza, Abbaschian, ed. Physical metallurgy principles. 3rd ed. Boston: PWS-Kent, 1992.
Find full textE, Reed-Hill Robert, and Abbaschian Lara, eds. Physical metallurgy principles. 4th ed. Stamford, Conn: Cengage Learning, 2009.
Find full textLara, Abbaschian, and Reed-Hill Robert E, eds. Physical metallurgy principles. 4th ed. Stamford, CT: Cengage Learning, 2010.
Find full textR, Abbaschian, ed. Physical metallurgy principles. 3rd ed. Boston: PWS-Kent Pub., 1992.
Find full textBook chapters on the topic "Physical Metallurgy"
Yeh, Jien-Wei. "Physical Metallurgy." In High-Entropy Alloys, 51–113. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27013-5_3.
Full textGuodong, Wang, and Xu Kuangdi. "Physical Metallurgy (TMCP)." In The ECPH Encyclopedia of Mining and Metallurgy, 1–4. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1087-1.
Full textSingh, Ramesh. "Physical Metallurgy." In Applied Welding Engineering, 13–21. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-391916-8.00003-0.
Full textSingh, Ramesh. "Physical metallurgy." In Applied Welding Engineering, 11–24. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-821348-3.00004-5.
Full text"Physical Metallurgy." In Construction Materials. Spon Press, 2001. http://dx.doi.org/10.4324/9780203478981.ch08.
Full textSingh, Ramesh. "Physical Metallurgy." In Applied Welding Engineering, 13–26. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-804176-5.00003-7.
Full textAlla, Rama. "Physical Metallurgy." In Dental Materials Science, 58. Jaypee Brothers Medical Publishers (P) Ltd., 2013. http://dx.doi.org/10.5005/jp/books/12018_5.
Full textChen, Long-Qing, and Yijia Gu. "Computational Metallurgy." In Physical Metallurgy, 2807–35. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-53770-6.00027-7.
Full textBhadeshia, H. K. D. H. "Physical Metallurgy of Steels." In Physical Metallurgy, 2157–214. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-53770-6.00021-6.
Full textLESLIE, W. C., and E. HORNBOGEN. "PHYSICAL METALLURGY OF STEELS." In Physical Metallurgy, 1555–620. Elsevier, 1996. http://dx.doi.org/10.1016/b978-044489875-3/50022-3.
Full textConference papers on the topic "Physical Metallurgy"
Sakkinen, Daniel J. "Physical Metallurgy of Magnesium Die Cast Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940779.
Full textRadavich, J. F. "The Physical Metallurgy of Cast and Wrought Alloy 718." In Superalloys. TMS, 2004. http://dx.doi.org/10.7449/1989/superalloys_1989_229_240.
Full textHeck, K. A., D. F. Smith, J. S. Smith, D. A. Wells, and M. A. Holderby. "The Physical Metallurgy of a Silicone-Containing Low Expansion Superalloy." In Superalloys. TMS, 1988. http://dx.doi.org/10.7449/1988/superalloys_1988_151_160.
Full textMuttaqii, Muhammad Al, Muhammad Amin, Anton Sapto Handoko, David Candra Birawidha, Kusno Isnugroho, Yusup Hendronursito, Niken Rahayu, and Syafriadi. "The characterization and physical properties of paving block products over basalt minerals." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002382.
Full textPuspita, Angella Natalia Ghea, Rahmadhani Triastomo, Yurian Ariandi Andrameda, Rininta Triaswinanti, Kurniawan Kurniawan, Muhammad Dzikri Ahira Soefihara, Farrel Alvian Purnama, et al. "Evaluation of a recycling process for discarded integrated circuits using physical separation methods." In 5TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2022): Strengthening research and innovation in metallurgy and materials for sustainable economic development. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0186578.
Full textZakharov, Leonid, and Dmitry Isakov. "Microcontroller architecture for industrial cyber-physical systems." In PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANUFACTURING AND METALLURGY (ICIMM 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0074750.
Full textOtt, George A., and Carlos Morone. "THE PHYSICAL METALLURGY OF 4% CHROMIUM MOLYBDENUM FORGED STEEL COLD MILL WORK ROLLS." In 49º Seminário de Laminação. São Paulo: Editora Blucher, 2012. http://dx.doi.org/10.5151/2594-5297-22735.
Full textGlodowski, R. J., M. Korchynsky, and S. K. Banerji. "Physical Metallurgy Applications and Enhanced Machinability of Microalloyed V-Ti-N Forging Steels." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/980884.
Full textGibbs, Frank E. "Identification of a physical metallurgy surrogate for the plutonium—1 wt. % gallium alloy." In Plutonium futures-The science (Topical conference on Plutonium and actinides). AIP, 2000. http://dx.doi.org/10.1063/1.1292217.
Full textBengtsson, Sven, Human Gherekhloo, and Anna Larsson. "Qualification Of A New Powder Production Process For Laser Powder Bed Fusion Application." In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235766782.
Full textReports on the topic "Physical Metallurgy"
Zhong, Bo. Physical metallurgy and properties of TiNiSn and PtMnSb. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/453775.
Full textLiu, C. (Physical metallurgy and mechanical behavior of ordered intermetallics). Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/5525855.
Full textJinke, Tang. Physical metallurgy and magnetic behavior of Cd stabilized bcc (beta)Gd alloys. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6888636.
Full textGlazoff, Michael Vasily. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1170305.
Full text