Academic literature on the topic 'Physical properties of the fluid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physical properties of the fluid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physical properties of the fluid"
Liţă, Marin, and Dragoş Buzdugan. "Physical Properties of Magnetorheological Fluid Dampers." Solid State Phenomena 188 (May 2012): 361–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.188.361.
Full textSteele-MacInnis, Matthew, and Craig E. Manning. "Hydrothermal Properties of Geologic Fluids." Elements 16, no. 6 (December 1, 2020): 375–80. http://dx.doi.org/10.2138/gselements.16.6.375.
Full textLloyd, John R., Miquel O. Hayesmichel, and Clark J. Radcliffe. "Internal Organizational Measurement for Control of Magnetorheological Fluid Properties." Journal of Fluids Engineering 129, no. 4 (November 21, 2006): 423–28. http://dx.doi.org/10.1115/1.2436588.
Full textTAKISHIMA, Shigeki. "Physical Properties for Supercritical Fluid-Aided Polymer Processing." NIPPON GOMU KYOKAISHI 77, no. 10 (2004): 336–42. http://dx.doi.org/10.2324/gomu.77.336.
Full textShaw, Harry. "Muds and mudstones: physical and fluid-flow properties." Continental Shelf Research 21, no. 2 (January 2001): 203–5. http://dx.doi.org/10.1016/s0278-4343(00)00098-4.
Full textKUBOI, Toshiya, Yanrong LI, and Terumi INAGAKI. "Thermal, physical and chemical properties of magnetic fluid." Proceedings of Conference of Kanto Branch 2019.25 (2019): 19B18. http://dx.doi.org/10.1299/jsmekanto.2019.25.19b18.
Full textSavolainen, Jari, Timo Fabritius, and Olli Mattila. "Effect of Fluid Physical Properties on the Emulsification." ISIJ International 49, no. 1 (2009): 29–36. http://dx.doi.org/10.2355/isijinternational.49.29.
Full textAplin, Andrew C., Andrew J. Fleet, and Joe H. S. Macquaker. "Muds and mudstones: physical and fluid-flow properties." Geological Society, London, Special Publications 158, no. 1 (1999): 1–8. http://dx.doi.org/10.1144/gsl.sp.1999.158.01.01.
Full textEl Hassan, Mouhammad, Hassan H. Assoum, Nikolay Bukharin, Kamel Abed-Meraim, and Anas Sakout. "Investigation of thermo-physical fluid properties effect on binary fluid ejector performance." Energy Reports 6 (February 2020): 287–92. http://dx.doi.org/10.1016/j.egyr.2019.11.076.
Full textQiu, Zhongzhu, Lin Li, Qunzhi Zhu, Ruitang Guo, Yuan Yao, Congcong Wu, Shengnan Li, and Peng Li. "Physical Stability, Rheology, Thermal Conductivity and Optical and Corrosion Properties of a Graphene Quantum Dot Fluid." Journal of Nanoscience and Nanotechnology 21, no. 10 (October 1, 2021): 5312–18. http://dx.doi.org/10.1166/jnn.2021.19306.
Full textDissertations / Theses on the topic "Physical properties of the fluid"
Cline, Jean Schroeder. "Physical and chemical aspects of fluid evolution in hydrothermal ore systems." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-09162005-115029/.
Full textChurakov, Sergey. "Physical-chemical properties of complex natural fluids." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962849723.
Full textDolman, Richard. "Physical properties derived from seismic modelling at the toe of the Barbados accretionary complex." Thesis, University of Birmingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364522.
Full textLi, Zhi. "Physical properties of a thermally cracked andesite and fluid-injection induced rupture at laboratory scale." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE003/document.
Full textThe physical properties and mechanical behavior of andesite are of interest in the context of geothermal reservoir, CO2 sequestration and for several natural processes. The effects of thermal crack damage on the physical properties and rupture processes of andesite were investigated under triaxial deformation at room temperature. Secondly we did research on the effect of alteration on physical behavior and mineralogy. At last a series of experiments were performed in order to investigate the effect of fluid pressure variation i) on the mechanical behavior of andesite samples and ii) on acoustic emissions activities
Kalakonda, Parvathalu. "Thermal Physical Properties Of Nanocomposites Of Complex Fluids." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/301.
Full textMoses, Royston Kyle. "Hydrodynamic evaluation of the effects of fluid physical properties and sieve tray geometry on entrainment and weeping." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95996.
Full textENGLISH ABSTRACT: Distillation is one of the most widely used processes for the separation of fluids with different volatilities. Due to the popularity of this process it is often assumed that the hydrodynamic behaviour inside distillation columns is well-defined. However, this is not always the case and this study therefore endeavoured to provide additional insight into the topic through a systematic investigation into the hydrodynamics and the capacity limitations of a sieve tray distillation column. The objective of the study was to measure and evaluate the effects of the following variables on entrainment and weeping: - Fluid flow rate (gas and liquid). - Plate geometry (i.e. hole diameter and fractional hole area). - Liquid properties (i.e. surface tension, viscosity and density). - Gas properties (i.e. viscosity and density). The hydrodynamic effects were evaluated at zero mass transfer in a pilot-scale tray column, by passing pure liquids and gases in counter current configuration. The pilot column was rectangular in shape with internal dimensions of 175 mm by 635 mm. A chimney tray was used to capture the weeping liquid, while a de-entrainment tray was used in combination with a mist eliminator pad to capture the entrained liquid. The fractional hole areas for the sieve trays under investigation were 7%, 11% and 15% and the hole diameters were 3.2 mm (⅛ in.), 6.4 mm (¼ in.) and 12.7 mm (½ in.). The experimental liquids were ethylene glycol, butanol, water and silicone oil, while the gases were air and carbon dioxide (CO2). These experimental measurements produced over 10 000 data points for entrainment and over 7 000 data points of weeping. The results were repeatable and the entrainment values compared reasonably well with previous data produced by Nutter (1971) and Uys (2012). The differences between entrainment for the different liquids were more significant in the spray regime than in the froth regime, and butanol was entrained more readily than silicone oil, ethylene glycol and water. Fluids that caused a larger spray layer in the dispersion zone produced more entrainment. Entrainment increased with decreasing liquid density, decreasing liquid surface tension and decreasing liquid viscosity. The more unstable the dispersion layer, the higher the entrainment. The liquid density strongly influenced weeping, i.e. weeping increased with increasing liquid density. On the other hand, gases with higher densities – and thus with a higher mass flow rates at similar volumetric flow rates through the sieve tray – displayed less weeping and more entrainment than less dense gases, because of an increased upward drag force on the fluids. When considering tray geometry and when operating in the spray regime, the magnitude of entrainment increased with decreasing fractional hole area, while the dependency of entrainment on fractional hole area was more prominent at lower fractional hole areas. When operating in the froth regime – typically above 23 m3/(h.m) – the fractional hole area had a relatively small influence on the magnitude of entrainment, while the cross-flowing liquid rate dominated related effects. In the spray regime, i.e. typically below 23 m3/(h.m), the entrainment increased with increasing sieve tray hole diameter, while hole diameter had a relatively small influence on entrainment at higher liquid flow rates between 23 and 60 m3/(h.m). However, at even higher liquid flow rates in the froth regime, i.e. above 60 m3/(h.m), the effect of hole diameter on the entrainment became more prominent again, with increased entrainment for smaller hole diameters. The effect of hole diameter on weeping differed with changing fluid combinations and the 12.7 mm hole size caused notably less weeping than the 3.2 mm and 6.4 mm trays at higher liquid flow rates. It is believed that weeping occurred preferentially at so-called localised high pressure zones on the sieve tray. At high gas and liquid flow rates, the resultant extended dispersion layer allows minimal intimate contact between the plate and the liquid (minimising such localized high-pressure zones). In effect, the liquid ‘jumps’ over the entire flow path length in the test rig, thus resulting in low weeping rates at high gas and liquid rates. The effects of fractional hole area and hole diameter on entrainment and weeping can be correlated with combinations of well-known hydrodynamic dimensionless numbers, such as the Weber number (We), Froude number (Fr) and Reynolds number (Re). Within the limitations of this study, the flow-Froude number was shown to be the most useful dimensionless number, since it displayed a monotonic relationship with magnitude of entrainment for different combinations of fluid systems and tray configurations. Furthermore, both the construction number and fluid density ratio could be used in a sensible manner to correlate some of the effects of tray geometry on entrainment.
AFRIKAANSE OPSOMMING: Distillasie word wêreldwyd op groot en klein skaal toegepas as ʼn metode om chemiese komponente van mekaar te skei, gebasseer op hul verskil in vlugtigheid. Die hidrodinamiese gedrag van vloeistowwe en hul damp binne ʼn distillasiekolom beïnvloed die effektiwiteit van die skeidingsproses. Hierdie studie beoog dus om bykomende insig te verskaf tot die hidrodinamika en kapasiteitsbeperkings van ʼn plaat-distilleerkolom. Die doelwit van die studie was om die invloed van die volgende veranderlikes op die meesleuring en deurdripping van vloeistowwe te ondersoek: - Gas- en vloeistof vloeitempo. - Plaatgeometrie (i.e. gatdeursnit en fraksionele deurvloei-area). - Vloeistofeienskappe (i.e. oppervlakspanning, viskositeit en digtheid). - Gaseienskappe (i.e. viskositeit en digtheid). Die hidrodinamiese studie is uitgevoer in ʼn reghoekige plaatkolom met interne afmetings van 175 mm x 635 mm. Die vloeistof en gasfases is in kontak gebring op ʼn teenstroom basis, met geen massa-oordrag wat plaasvind nie. ʼn Skoorsteenplaat het die vloeistof opgevang wat deurdrip terwyl ʼn ekstra plaat aan die bokant van die kolom die meegesleurde vloeistof opgevang het. Hierdie ekstra plaat is gebruik tesame met ʼn mis-elimineerder om al die meegesleurde vloeistof op te vang. Plate met verskillende deurvloei-areas (7%, 11% en 15%) en gat deursnitte (3.2 mm, 6.4 mm en 12.7 mm) is gebruik in die ondersoek. Die vloeistowwe wat gebruik is, sluit in etileen glikol, butanol, water en silikon olie. Lug en koolstofdioksied is as gasse gebruik. Die eksperimentele data het goeie herhaalbaarheid getoon en is vergelykbaar met die gepubliseerde data van Nutter (1971) en Uys (2012). Meer as 10 000 data punte is gemeet vir vloeistofmeesleuring en meer as 7 000 vir deurdripping. Die verskil in hoeveelheid meesleuring tussen die vloeistowwe, soos ondersoek in hierdie studie, was mees beduidend in die spoei-regime. Butanol is die meeste meegesleur, gevolg deur silikon olie en dan etileen glikol. Water is die minste meegesleur is. Vloeistowwe wat ʼn groter sproeivolume in die dispersielaag bo die plaat gevorm het, is die meeste meegesleur. Meesleuring het toegeneem met ʼn afname in digtheid, oppervlakspanning en viskositeit van die vloeistof. ʼn Onstabiele dispersielaag bo die plaat het meer meesleuring tot gevolg gehad. Vloeistofdeurdripping is sterk beïnvloed deur vloeistofdigtheid, i.e. deurdripping het sterk toegeneem met digtheid. Gasse met ʼn hoër digtheid veroorsaak weer ʼn afname in deurdripping a.g.v. die hoër opwaartse sleurkragte wat ʼn gas met hoë digtheid op die vloeistof uitoefen. In die sproei-regime (tipies by vloeistofvloeitempos laer as 23 m3/(h.m) is gevind dat meesleuring toeneem met ʼn afname in fraksionele deurvloei-area. Meesleuring se afhanklikheid van fraksionele deurvloei-area was meer beduidend by laer fraksionele deurvloei-areas. In die skuim-regime (tipies by vloeistofvloeitempos hoër as 23 m3/(h.m)) was die afhanklikheid van meesleuring op fraksionele deurvloei-area relatief klein. In die sproei-regime is gevind dat meesleuring toeneem met ʼn toename in gat deursnit, terwyl dieselfde veranderlike ʼn minder beduidende invloed op meesleuring getoon het by hoër vloeistofvloeitempos (tussen 23 en 60 m3/(h.m)). By vloeitempos hoër as 60 m3/(h.m) het meesleuring weer begin toeneem met ʼn afname in gat deursnit. By hoë vloeistofvloeitempos het die plaat met 12.7 mm gat deursnit aansienlik minder deurdripping getoon as plate met 3.2 mm en 6.4 mm deursnitte. Daar word vermoed dat deurdripping hoofsaaklik plaasvind by lokale hoëdruk gebiede op die plaat. By hoër vloeistof- en gasvloeitempos beslaan die dispersielaag ʼn groter volume en is daar dus minder gebiede van digte vloeistofkontak met die plaat, wat ʼn afname in die lokale drukgebiede veroorsaak. Dit lei tot ʼn afname in deurdripping by hoër gas- en vloeistofvloeitempos. Die invloed van fraksionele deurvloei-area en gatdeursnit op meesleuring en deurdripping korreleer goed met kombinasies van welbekende hidrodinamiese dimensielose getalle, i.e. die Webergetal (We), die Froudegetal (Fr) en die Reynoldsgetal (Re). Die vloei-Froudegetal is mees bruikbaar om die invloed van vloeistof-en-gas kombinasies en kolomuitleg op meesleuring te korreleer. Die konstruksiegetal asook die digtheidsverhoudings tussen vloeistof en gas kan op ʼn sinvolle manier aangewend word om van die invloede van plaatgeometrie op meesleuring te beskryf.
Bray, David Jonathan. "Statistical properties of a randomly excited granular fluid." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11041/.
Full textLorenson, Claude Pierre. "Dynamical properties of superfluid turbulence /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726339902566.
Full textShilstone, Gavin Forbes. "Physical properties in supercritical fluids applied to extraction and chromatography." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277481.
Full textBodurtha, Paul. "Novel techniques for investigating the permeation properties of environmentally-friendly paper coatings : the influence of structural anisotropy on fluid permeation in porous media." Thesis, University of Plymouth, 2003. http://hdl.handle.net/10026.1/2049.
Full textBooks on the topic "Physical properties of the fluid"
1925-, Saupe Alfred, ed. One- and two-dimensional fluids: Physical properties of smectic, lamellar, and columnar liquid crystals. Boca Raton: Taylor & Francis, 2006.
Find full textLiley, P. E. Properties of inorganic and organic fluids. New York: Hemisphere Pub. Corp., 1988.
Find full textArai, Y. Supercritical Fluids: Molecular Interactions, Physical Properties, and New Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textChakraborty, Tapash. The Fractional Quantum Hall Effect: Properties of an Incompressible Quantum Fluid. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Find full textTrusler, J. P. M. Physical acoustics and metrology of fluids. Bristol [England]: Adam Hilger, 1991.
Find full textNATO, Advanced Study Institute International Advanced Course on the Liquid State and its Electrical Properties (1987 Sintra Portugal). The liquid state and its electrical properties. New York: Plenum Press, published in cooperation with NATO Scientific Affairs Division, 1988.
Find full textProject, Thermodynamic Tables. International thermodynamic tables of the fluid state. Oxford: Blackwell Scientific, 1993.
Find full textProject, Thermodynamic Tables. International thermodynamic tables of the fluid state. Oxford: Blackwell Scientific, 1993.
Find full textProject, Thermodynamic Tables. International thermodynamic tables of the fluid state. Oxford: Blackwell Scientific, 1990.
Find full textProject, Thermodynamic Tables. International thermodynamic tables of the fluid state. Oxford: Blackwell Scientific, 1987.
Find full textBook chapters on the topic "Physical properties of the fluid"
Liu, Tianshu, John P. Sullivan, Keisuke Asai, Christian Klein, and Yasuhiro Egami. "Physical Properties of Paints." In Experimental Fluid Mechanics, 31–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68056-5_3.
Full textTassios, Dimitrios P. "Physical Properties of Pure Fluids." In Applied Chemical Engineering Thermodynamics, 237–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-01645-9_8.
Full textShine, Annette D. "Polymers and Supercritical Fluids." In Physical Properties of Polymers Handbook, 319–38. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69002-5_18.
Full textde Castro, Maria Dolores Luque, Miguel Valcárcel, and Maria Teresa Tena. "Physico — Chemical Properties of Supercritical Fluids." In Analytical Supercritical Fluid Extraction, 32–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78673-0_2.
Full textPoreskandar, S., S. H. Maghsoodlou, and A. K. Haghi. "Mechanical and Physical Properties of Electrospun Nanofibers: an Engineering Insight." In Handbook of Research for Fluid and Solid Mechanics, 33–70. Toronto : Apple Academic Press, 2018.: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315365701-3.
Full textHu, Xuetao. "The Physical Properties of Reservoir Fluids." In Physics of Petroleum Reservoirs, 165–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55026-7_3.
Full textHu, Xuetao. "The Physical Properties of Reservoir Fluids." In Physics of Petroleum Reservoirs, 165–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53284-3_3.
Full textSinha, Mihir K., and Larry R. Padgett. "Physical Properties of Reservoir Hydrocarbon Fluids." In Reservoir Engineering Techniques Using Fortran, 3–11. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5293-5_1.
Full textClifford, Anthony. "Physical Properties as Related to Chemical Reactions." In Chemical Synthesis Using Supercritical Fluids, 54–66. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007. http://dx.doi.org/10.1002/9783527613687.ch3.
Full textPai, Shih-I., and Shijun Luo. "Thermodynamics and Physical Properties of Compressible Fluids." In Theoretical and Computational Dynamics of a Compressible Flow, 14–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-1619-1_2.
Full textConference papers on the topic "Physical properties of the fluid"
Jakoby, Bernhard. "Miniaturized Sensors for Physical Fluid Properties." In 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_k001.
Full textThranhardt, Marcel, Peter-Christian Eccardt, Hubert Mooshofer, Peter Hauptmann, and Levent Degertekin. "Sensing physical fluid properties with CMUT arrays." In 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441689.
Full textBose, Tarit. "Real Fluid Thermo-physical and Transport Properties Calculations for Water." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-804.
Full textKemp, Steven P., and James L. Linden. "Physical and Chemical Properties of a Typical Automatic Transmission Fluid." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/902148.
Full textKawada, Genichi, and Takashi Kanai. "Procedural fluid modeling of explosion phenomena based on physical properties." In the 2011 ACM SIGGRAPH/Eurographics Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2019406.2019429.
Full textLiu, Yunbo, Subha Maruvada, Randy L. King, Bruce A. Herman, Keith A. Wear, and Emad S. Ebbini. "Temperature-dependent Physical Properties of a HIFU Blood Mimicking Fluid." In 8TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. AIP, 2009. http://dx.doi.org/10.1063/1.3131433.
Full textMakanda, Gilbert. "Free Convection Fluid Flow from a Spinning Sphere with TemperatureDependent Physical Properties." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2017. http://dx.doi.org/10.11159/ffhmt17.128.
Full textChakravarthy, Kalyana, Joanna McFarlane, Stuart Daw, Youngchul Ra, Rolf D. Reitz, and Jelani Griffin. "Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines." In Powertrain & Fluid Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-4030.
Full textGutman, Roman. "Formation Fluid Sampling Technique Allowing to Control Physical Properties of Sampling Medium." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/189287-stu.
Full textEndres, Anthony L., and Rosemary Knight. "Interpreting the physical properties of partially saturated rocks: Effect of microscopic fluid distribution." In SEG Technical Program Expanded Abstracts 1990. Society of Exploration Geophysicists, 1990. http://dx.doi.org/10.1190/1.1890354.
Full textReports on the topic "Physical properties of the fluid"
Roberts, Christine Cardinal, Alan Graham, Martin Nemer, Leslie M. Phinney, Robert M. Garcia, Melissa Marie Soehnel, and Emily Kate Stirrup. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343365.
Full textBahr, J. M. Testing the correlation between seismic stratigraphy, diagenesis and physical rock properties: Evaluation of fluid flow during early and late diagenesis. Progress report, April 15, 1994--April 14, 1995. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/29384.
Full textBahr, J. M. Testing the correlation between seismic stratigraphy, diagenesis and physical rock properties: Evaluation of fluid flow during early and late diagenesis. Final report, April 15, 1994--April 14, 1996. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/563239.
Full textMartinez-Sanchez, Manuel. Physical Fluid Mechanics in MPD Thrusters. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada190309.
Full textGlauser, Walter. Geomechanical and Fluid Transport Properties. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1234515.
Full textKincaid, J. Rational approximations to fluid properties. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/7121381.
Full textPoirier, M. R., P. R. Hansen, and S. D. Fink. F-Canyon Sludge Physical Properties. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/881428.
Full textShankland, T. J., P. A. Johnson, and K. R. McCall. Physical properties and mantle dynamics. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548613.
Full textBanovic, Stephen W., Christopher N. McCowan, and William E. Luecke. Physical properties of structural steels. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-3e.
Full textDallimore, S. R., and D. E. Patterson. Physical Properties of Stratigraphic Units. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132229.
Full text