Journal articles on the topic 'Physics-informed Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Physics-informed Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Full textPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (June 7, 2023): 6892. http://dx.doi.org/10.3390/app13126892.
Full textKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (November 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Full textBarmparis, G. D., and G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning." Journal of the Optical Society of America B 38, no. 9 (August 2, 2021): C120. http://dx.doi.org/10.1364/josab.430206.
Full textPilania, G., K. J. McClellan, C. R. Stanek, and B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery." Journal of Chemical Physics 148, no. 24 (June 28, 2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Full textLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco, and Agnese Seminara. "Physics informed machine learning for wind speed prediction." Energy 268 (April 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Full textTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers, and Neil D. Sims. "Resource-efficient machining through physics-informed machine learning." Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Full textKapoor, Taniya, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. "Physics-informed machine learning for moving load problems." Journal of Physics: Conference Series 2647, no. 15 (June 1, 2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Full textBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya, and Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting." ECS Meeting Abstracts MA2024-01, no. 2 (August 9, 2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Full textMandl, Luis, Somdatta Goswami, Lena Lambers, and Tim Ricken. "Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning." Computer Methods in Applied Mechanics and Engineering 434 (February 2025): 117586. http://dx.doi.org/10.1016/j.cma.2024.117586.
Full textLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee, and Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Full textLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability." AIP Advances 11, no. 2 (February 1, 2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Full textMondal, B., T. Mukherjee, and T. DebRoy. "Crack free metal printing using physics informed machine learning." Acta Materialia 226 (March 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Full textHowland, Michael F., and John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning." Energies 12, no. 14 (July 16, 2019): 2716. http://dx.doi.org/10.3390/en12142716.
Full textTartakovsky, A. M., D. A. Barajas-Solano, and Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions." Journal of Computational Physics 426 (February 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Full textHsu, Abigail, Baolian Cheng, and Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning." Physics of Plasmas 27, no. 1 (January 2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Full textKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley, and Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae." Astrophysical Journal 940, no. 1 (November 1, 2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Full textLang, Xiao, Da Wu, and Wengang Mao. "Physics-informed machine learning models for ship speed prediction." Expert Systems with Applications 238 (March 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Full textPiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu, and Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning." IEEE Transactions on Artificial Intelligence 5, no. 3 (March 2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Full textKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez, and Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (March 24, 2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Full textMarian, Max, and Stephan Tremmel. "Physics-Informed Machine Learning—An Emerging Trend in Tribology." Lubricants 11, no. 11 (October 30, 2023): 463. http://dx.doi.org/10.3390/lubricants11110463.
Full textOsorio, Julian D., Mario De Florio, Rob Hovsapian, Chrys Chryssostomidis, and George Em Karniadakis. "Physics-Informed machine learning for solar-thermal power systems." Energy Conversion and Management 327 (March 2025): 119542. https://doi.org/10.1016/j.enconman.2025.119542.
Full textDe Ryck, Tim, and Siddhartha Mishra. "Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning." Acta Numerica 33 (July 2024): 633–713. http://dx.doi.org/10.1017/s0962492923000089.
Full textCarpenter, Chris. "Physics-Informed Deep-Learning Models Improve Forecast Scalability, Reliability." Journal of Petroleum Technology 76, no. 10 (October 1, 2024): 90–93. http://dx.doi.org/10.2118/1024-0090-jpt.
Full textTetali, Harsha Vardhan, and Joel Harley. "A physics-informed machine learning based dispersion curve estimation for non-homogeneous media." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A239. http://dx.doi.org/10.1121/10.0016136.
Full textKutz, J. Nathan, and Steven L. Brunton. "Parsimony as the ultimate regularizer for physics-informed machine learning." Nonlinear Dynamics 107, no. 3 (January 20, 2022): 1801–17. http://dx.doi.org/10.1007/s11071-021-07118-3.
Full textCorson, Gregory, Jaydeep Karandikar, and Tony Schmitz. "Physics-informed Bayesian machine learning case study: Integral blade rotors." Journal of Manufacturing Processes 85 (January 2023): 503–14. http://dx.doi.org/10.1016/j.jmapro.2022.12.004.
Full textSharma, Pushan, Wai Tong Chung, Bassem Akoush, and Matthias Ihme. "A Review of Physics-Informed Machine Learning in Fluid Mechanics." Energies 16, no. 5 (February 28, 2023): 2343. http://dx.doi.org/10.3390/en16052343.
Full textZeng, Shi, and Dechang Pi. "Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning." Sensors 23, no. 10 (May 22, 2023): 4969. http://dx.doi.org/10.3390/s23104969.
Full textMeguerdijian, Saro, Rajesh J. Pawar, Bailian Chen, Carl W. Gable, Terry A. Miller, and Birendra Jha. "Physics-informed machine learning for fault-leakage reduced-order modeling." International Journal of Greenhouse Gas Control 125 (May 2023): 103873. http://dx.doi.org/10.1016/j.ijggc.2023.103873.
Full textSoyarslan, Celal, and Marc Pradas. "Physics-informed machine learning in asymptotic homogenization of elliptic equations." Computer Methods in Applied Mechanics and Engineering 427 (July 2024): 117043. http://dx.doi.org/10.1016/j.cma.2024.117043.
Full textAntonion, Klapa, Xiao Wang, Maziar Raissi, and Laurn Joshie. "Machine Learning Through Physics–Informed Neural Networks: Progress and Challenges." Academic Journal of Science and Technology 9, no. 1 (January 20, 2024): 46–49. http://dx.doi.org/10.54097/b1d21816.
Full textOmar, Sara Ibrahim, Chen Keasar, Ariel J. Ben-Sasson, and Eldad Haber. "Protein Design Using Physics Informed Neural Networks." Biomolecules 13, no. 3 (March 1, 2023): 457. http://dx.doi.org/10.3390/biom13030457.
Full textKong, Lingju, Ryan Z. Shi, and Min Wang. "A physics-informed neural network model for social media user growth." Applied Computing and Intelligence 4, no. 2 (2024): 195–208. http://dx.doi.org/10.3934/aci.2024012.
Full textManzoor, Tayyab, Hailong Pei, Zhongqi Sun, and Zihuan Cheng. "Model Predictive Control Technique for Ducted Fan Aerial Vehicles Using Physics-Informed Machine Learning." Drones 7, no. 1 (December 21, 2022): 4. http://dx.doi.org/10.3390/drones7010004.
Full textHooshyar, Saman, and Arash Elahi. "Sequencing Initial Conditions in Physics-Informed Neural Networks." Journal of Chemistry and Environment 3, no. 1 (March 26, 2024): 98–108. http://dx.doi.org/10.56946/jce.v3i1.345.
Full textNavidi, Sina, Adam Thelen, Tingkai Li, and Chao Hu. "A Comparative Study on Physics-Informed Machine Learning for Battery Degradation Diagnostics." ECS Meeting Abstracts MA2023-01, no. 4 (August 28, 2023): 848. http://dx.doi.org/10.1149/ma2023-014848mtgabs.
Full textLi, Zhenyu. "A Review of Physics-Informed Neural Networks." Applied and Computational Engineering 133, no. 1 (January 24, 2025): 165–73. https://doi.org/10.54254/2755-2721/2025.20636.
Full textKashinath, K., M. Mustafa, A. Albert, J.-L. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, et al. "Physics-informed machine learning: case studies for weather and climate modelling." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2194 (February 15, 2021): 20200093. http://dx.doi.org/10.1098/rsta.2020.0093.
Full textWenzel, Sören, Elena Slomski-Vetter, and Tobias Melz. "Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning." Machines 10, no. 7 (June 29, 2022): 525. http://dx.doi.org/10.3390/machines10070525.
Full textFang, Dehong, and Jifu Tan. "Immersed boundary-physics informed machine learning approach for fluid–solid coupling." Ocean Engineering 263 (November 2022): 112360. http://dx.doi.org/10.1016/j.oceaneng.2022.112360.
Full textRaymond, Samuel J., David Collins, and John Willams. "Designing acoustofluidic devices using a simplified physics-informed machine learning approach." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A254. http://dx.doi.org/10.1121/10.0011237.
Full textChen, Wenqian, Qian Wang, Jan S. Hesthaven, and Chuhua Zhang. "Physics-informed machine learning for reduced-order modeling of nonlinear problems." Journal of Computational Physics 446 (December 2021): 110666. http://dx.doi.org/10.1016/j.jcp.2021.110666.
Full textMiller, Scott T., John F. Lindner, Anshul Choudhary, Sudeshna Sinha, and William L. Ditto. "The scaling of physics-informed machine learning with data and dimensions." Chaos, Solitons & Fractals: X 5 (March 2020): 100046. http://dx.doi.org/10.1016/j.csfx.2020.100046.
Full textSrinivasan, Shriram, Eric Cawi, Jeffrey Hyman, Dave Osthus, Aric Hagberg, Hari Viswanathan, and Gowri Srinivasan. "Physics-informed machine learning for backbone identification in discrete fracture networks." Computational Geosciences 24, no. 3 (May 17, 2020): 1429–44. http://dx.doi.org/10.1007/s10596-020-09962-5.
Full textZhang, Xinlei, Jinlong Wu, Olivier Coutier-Delgosha, and Heng Xiao. "Recent progress in augmenting turbulence models with physics-informed machine learning." Journal of Hydrodynamics 31, no. 6 (December 2019): 1153–58. http://dx.doi.org/10.1007/s42241-019-0089-y.
Full textXie, Chiyu, Shuyi Du, Jiulong Wang, Junming Lao, and Hongqing Song. "Intelligent modeling with physics-informed machine learning for petroleum engineering problems." Advances in Geo-Energy Research 8, no. 2 (March 12, 2023): 71–75. http://dx.doi.org/10.46690/ager.2023.05.01.
Full textLi, Shijiang, Shaojie Wang, Xiu Chen, Gongxi Zhou, Binyun Wu, and Liang Hou. "Application of physics-informed machine learning for excavator working resistance modeling." Mechanical Systems and Signal Processing 209 (March 2024): 111117. http://dx.doi.org/10.1016/j.ymssp.2024.111117.
Full textYan, Bicheng, Manojkumar Gudala, Hussein Hoteit, Shuyu Sun, Wendong Wang, and Liangliang Jiang. "Physics-informed machine learning for noniterative optimization in geothermal energy recovery." Applied Energy 365 (July 2024): 123179. http://dx.doi.org/10.1016/j.apenergy.2024.123179.
Full textKuo, T., S. Manikkan, I. Bilionis, X. Liu, and P. Karava. "Physics-informed machine learning framework to model buildings from incomplete information." Journal of Physics: Conference Series 2600, no. 7 (November 1, 2023): 072013. http://dx.doi.org/10.1088/1742-6596/2600/7/072013.
Full text