Academic literature on the topic 'Physics Informed Neural Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physics Informed Neural Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physics Informed Neural Networks"
Trahan, Corey, Mark Loveland, and Samuel Dent. "Quantum Physics-Informed Neural Networks." Entropy 26, no. 8 (July 30, 2024): 649. http://dx.doi.org/10.3390/e26080649.
Full textHofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard, and Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries." Journal of The Electrochemical Society 170, no. 9 (September 1, 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Full textPang, Guofei, Lu Lu, and George Em Karniadakis. "fPINNs: Fractional Physics-Informed Neural Networks." SIAM Journal on Scientific Computing 41, no. 4 (January 2019): A2603—A2626. http://dx.doi.org/10.1137/18m1229845.
Full textSong, Yanjie, He Wang, He Yang, Maria Luisa Taccari, and Xiaohui Chen. "Loss-attentional physics-informed neural networks." Journal of Computational Physics 501 (March 2024): 112781. http://dx.doi.org/10.1016/j.jcp.2024.112781.
Full textRojas, Sergio, Paweł Maczuga, Judit Muñoz-Matute, David Pardo, and Maciej Paszyński. "Robust Variational Physics-Informed Neural Networks." Computer Methods in Applied Mechanics and Engineering 425 (May 2024): 116904. http://dx.doi.org/10.1016/j.cma.2024.116904.
Full textHenkes, Alexander, Henning Wessels, and Rolf Mahnken. "Physics informed neural networks for continuum micromechanics." Computer Methods in Applied Mechanics and Engineering 393 (April 2022): 114790. http://dx.doi.org/10.1016/j.cma.2022.114790.
Full textChen, Haotian, Enno Kätelhön, and Richard G. Compton. "Predicting Voltammetry Using Physics-Informed Neural Networks." Journal of Physical Chemistry Letters 13, no. 2 (January 10, 2022): 536–43. http://dx.doi.org/10.1021/acs.jpclett.1c04054.
Full textLee, Sang-Min. "Physics-Informed Neural Networks and its Applications." Journal of the Korea Academia-Industrial cooperation Society 23, no. 12 (December 31, 2022): 755–60. http://dx.doi.org/10.5762/kais.2022.23.12.755.
Full textSon, Hwijae, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. "Sobolev training for physics-informed neural networks." Communications in Mathematical Sciences 21, no. 6 (2023): 1679–705. http://dx.doi.org/10.4310/cms.2023.v21.n6.a11.
Full textOmar, Sara Ibrahim, Chen Keasar, Ariel J. Ben-Sasson, and Eldad Haber. "Protein Design Using Physics Informed Neural Networks." Biomolecules 13, no. 3 (March 1, 2023): 457. http://dx.doi.org/10.3390/biom13030457.
Full textDissertations / Theses on the topic "Physics Informed Neural Networks"
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Full textMirzai, Badi. "Physics-Informed Deep Learning for System Identification of Autonomous Underwater Vehicles : A Lagrangian Neural Network Approach." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301626.
Full textI den här uppsatsen utforskas Lagrangianska Neurala Nätverk (LNN) för systemidentifiering av Autonoma Undervattensfordon (AUV) med 6 frihetsgrader. En av de största utmaningarna med AUV är deras begränsningar när det kommer till trådlös kommunikation och navigering under vatten. Ett krav för att ha fungerande AUV är deras förmåga att navigera och utföra uppdrag under okända undervattensförhållanden med begränsad och brusig sensordata. Dessutom är ett kritiskt krav för lokalisering och adaptiv reglerteknik att ha noggranna modeller av systemets olinjära dynamik, samtidigt som den dynamiska miljön i havet tas i beaktande. De flesta sådana modeller tar inte i beaktande sensordata för att reglera dess parameterar. Insamling av sådan data för AUVer är besvärligt, men nödvändigt för att skapa större flexibilitet hos modellens parametrar. Trots de senaste genombrotten inom djupinlärning är traditionella metoder av systemidentifiering dominanta än idag för AUV. Det är av dessa anledningar som vi i denna uppsats strävar efter en datadriven metod, där vi förankrar lagar från fysik under inlärningen av systemets state-space modell. Mer specifikt utforskar vi LNN för ett system med högre dimension. Vidare expanderar vi även LNN till att även ta ickekonservativa krafter som verkar på systemet i beaktande, såsom dämpning och styrsignaler. Nätverket tränas att lära sig från simulerad data från en andra ordningens differentialekvation som beskriver en AUV. Den tränade modellen utvärderas genom att iterativt integrera fram dess rörelse från olika initialstillstånd, vilket jämförs med den korrekta modellen. Resultaten visade en modell som till viss del var kapabel till att förutspå korrekt acceleration, med begränsad framgång i att lära sig korrekt rörelseriktning framåt i tiden.
Jing, Li Ph D. Massachusetts Institute of Technology. "Physical symmetry enhanced neural networks." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128294.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, February, 2020
Cataloged from student-submitted PDF version of thesis
Includes bibliographical references (pages 91-99).
Artificial Intelligence (AI), widely considered "the fourth industrial revolution", has shown its potential to fundamentally change our world. Today's AI technique relies on neural networks. In this thesis, we propose several physical symmetry enhanced neural network models. We first developed unitary recurrent neural networks (RNNs) that solve gradient vanishing and gradient explosion problems. We propose an efficient parametrization method that requires [sigma] (1) complexity per parameter. Our unitary RNN model has shown optimal long-term memory ability. Next, we combine the above model with a gated mechanism. This model outperform popular recurrent neural networks like long short-term memory (LSTMs) and gated recurrent units (GRUs) in many sequential tasks. In the third part, we develop a convolutional neural network architecture that achieves logarithmic scale complexity using symmetry breaking concepts. We demonstrate that our model has superior performance on small image classification tasks. In the last part, we propose a general method to extend convolutional neural networks' inductive bias and embed other types of symmetries. We show that this method improves prediction performance on lens-distorted image
by Li Jing.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Sutherland, Connie. "Spatio-temporal feedback in stochastic neural networks." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27559.
Full textSquadrani, Lorenzo. "Deep neural networks and thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textGyawali, Gaurav. "Solving Atomic Wave Functions Using Artificial Neural Networks." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/honors_theses/104.
Full textDüring, Alexander. "Temporal aspects of spin-glass neural networks." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325892.
Full textWu, Dawen. "Solving Some Nonlinear Optimization Problems with Deep Learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG083.
Full textThis thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi
Tolley, Emma Elizabeth. "Monte Carlo event reconstruction implemented with artificial neural networks." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65535.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 41).
I implemented event reconstruction of a Monte Carlo simulation using neural networks. The OLYMPUS Collaboration is using a Monte Carlo simulation of the OLYMPUS particle detector to evaluate systematics and reconstruct events. This simulation registers the passage of particles as 'hits' in the detector elements, which can be used to determine event parameters such as momentum and direction. However, these hits are often obscured by noise. Using Geant4 and ROOT, I wrote a program that uses artificial neural networks to separate track hits from noise and reconstruct event parameters. The classification network successfully discriminates between track hits and noise for 97.48% of events. The reconstruction networks determine the various event parameters to within 2-3%.
by Emma Elizabeth Tolley.
S.B.
Doriat, Aurélien. "Caractérisation des couplages aéro-thermo-mécaniques lors d’un vieillissement par thermo-oxydation de composites à matrice polymère soumis à un écoulement rapide et chauffé." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0018.
Full textCarbon fiber-reinforced polymer matrix composites (CFRP) are widely used in cold aeronautical structures. In aeronautical engine applications, such as fan blades, these materials can be subjected to particularly severe environmental conditions, with temperatures reaching up to 120 ◦C and airflow speeds close to Mach 1. It is well established that epoxy polymers are prone to thermo-oxidation phenomena when exposed to high temperatures.This phenomenon involves the diffusion and reaction of oxygen within the polymer, leading to color changes, antiplasticization of the material, and embrittlement. Until now, aging tests have been mainly conducted in static air ovens, providing a detailed understanding of the phenomenon under these conditions. However, the impact of airflow on thermo-oxidation remains to be explored.This study thus aims to deepen the understanding of the coupling between airflow and material degradation due to thermo-oxidation.Samples were aged in an oven under air at atmospheric pressure and in the BATH wind tunnel, adapted for these tests and capable of generating an airflow at over 150 ◦C and Mach 1, thereby reproducing the most severe usage conditions encountered in aircraft engines. This comparison between oven and wind tunnel tests showed an acceleration of aging in the wind tunnel. To achieve this result, an experimental technique based on the color change induced by oxidation was developed and used. This technique was validated with indentation tests. With this improved understanding of the accelerated aging, a coupled model between the airflow, oxidation chemistry, and changes in mechanical properties was established to better understand the interfacial mechanisms. This modeling comprises three steps. The pressure and temperature fields at the sample surface were calculated using Reynolds-Averaged Navier-Stokes (RANS) fluid simulations. Then, a mechanistic model was used to describe the chemical reactions during oxidation. Finally, based on thecolor measurements, a physics-informed neural network (PINN) was implemented to couple the chemical quantities to the mechanical properties
Books on the topic "Physics Informed Neural Networks"
Aubin, Jean Pierre. Neural networks and qualitative physics. Cambridge: Cambridge University Press, 1996.
Find full textAubin, Jean Pierre. Neural networks and qualitative physics. Cambridge: Cambridge University Press, 2011.
Find full textE, Domany, and Cowan J, eds. Models of Neural Networks IV.: The Visual System - Physics of Neural Networks. S. l: Springer-Verlag New York, Incorporated, 2002.
Find full textE, Golès, Martínez Servet, and School on Statistical Physics and Cooperative Systems (2nd : 1990 : Santiago, Chile), eds. Statistical physics, automata networks, and dynamical systems. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textPham, Duc Truong. Neural Networks for Identification, Prediction and Control. London: Springer London, 1995.
Find full textAkhmet, Marat, and Mehmet Onur Fen. Replication of Chaos in Neural Networks, Economics and Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47500-3.
Full textDelgado-Frias, José G. VLSI for Artificial Intelligence and Neural Networks. Boston, MA: Springer US, 1991.
Find full textWorkshop on Neural Networks: from Biology to High Energy Physics (2nd 1992 Isola d'Elba, Italy). Second Workshop on Neural Networks: from Biology to High Energy Physics, Isola d'Elba, Italy, June 18-26, 1992. Edited by Benhar Omar. Singapore: World Scientific, 1993.
Find full textBook chapters on the topic "Physics Informed Neural Networks"
Kollmannsberger, Stefan, Davide D’Angella, Moritz Jokeit, and Leon Herrmann. "Physics-Informed Neural Networks." In Deep Learning in Computational Mechanics, 55–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76587-3_5.
Full textAwojoyogbe, Bamidele O., and Michael O. Dada. "Physics Informed Neural Networks (PINNs)." In Series in BioEngineering, 33–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2_2.
Full textGoswami, Somdatta, Aniruddha Bora, Yue Yu, and George Em Karniadakis. "Physics-Informed Deep Neural Operator Networks." In Computational Methods in Engineering & the Sciences, 219–54. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36644-4_6.
Full textAnitescu, Cosmin, Burak İsmail Ateş, and Timon Rabczuk. "Physics-Informed Neural Networks: Theory and Applications." In Computational Methods in Engineering & the Sciences, 179–218. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36644-4_5.
Full textWang, Sifan, and Paris Perdikaris. "Adaptive Training Strategies for Physics-Informed Neural Networks." In Knowledge-Guided Machine Learning, 133–60. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Full textde Wolff, Taco, Hugo Carrillo, Luis Martí, and Nayat Sanchez-Pi. "Optimal Architecture Discovery for Physics-Informed Neural Networks." In Advances in Artificial Intelligence – IBERAMIA 2022, 77–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22419-5_7.
Full textKim, Hyea Hyun, and Hee Jun Yang. "Domain Decomposition Algorithms for Physics-Informed Neural Networks." In Domain Decomposition Methods in Science and Engineering XXVI, 697–704. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95025-5_76.
Full textJohnson, Rob, Soukaïna Filali Boubrahimi, Omar Bahri, and Shah Muhammad Hamdi. "Physics-Informed Neural Networks for Solar Wind Prediction." In Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, 273–86. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37731-0_21.
Full textTurinici, Gabriel. "Optimal Time Sampling in Physics-Informed Neural Networks." In Lecture Notes in Computer Science, 218–33. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78395-1_15.
Full textVemuri, Sai Karthikeya, Tim Büchner, Julia Niebling, and Joachim Denzler. "Functional Tensor Decompositions for Physics-Informed Neural Networks." In Lecture Notes in Computer Science, 32–46. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78389-0_3.
Full textConference papers on the topic "Physics Informed Neural Networks"
Miao, Yuyang, Haolin Li, and Danilo Mandic. "GPINN: Physics-Informed Neural Network with Graph Embedding." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651053.
Full textZhang, Xin, Nanxi Chen, Jiyan Qiu, Pengcheng Shi, Xuesong Wu, and Wu Yuan. "Importance-Guided Sequential Training for Physics-Informed Neural Networks." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651329.
Full textYokota, Kazuya, Masataka Ogura, Takahiko Kurahashi, and Masajiro Abe. "Physics-Informed CNN for the Design of Acoustic Equipment." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650136.
Full textNavarin, Nicolò, Paolo Frazzetto, Luca Pasa, Pietro Verzelli, Filippo Visentin, Alessandro Sperduti, and Cesare Alippi. "Physics-Informed Graph Neural Cellular Automata: an Application to Compartmental Modelling." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650578.
Full textMishra, Sourav, Rudrashis Majumder, and Suresh Sundaram. "PINGS: Physics Informed Networks with Guided Supermasks for Sequential PDE Solving." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651548.
Full textCao, Yuandong, Chi Chiu So, Junmin Wang, and Siu Pang Yung. "System Stabilization of PDEs using Physics-Informed Neural Networks (PINNs)." In 2024 43rd Chinese Control Conference (CCC), 8759–64. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662626.
Full textCosta, Nuno, Filipa S. Barros, João J. G. Lima, Rui F. Pinto, and André Restivo. "Leveraging Physics-Informed Neural Networks as Solar Wind Forecasting Models." In ESANN 2024, 425–30. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-110.
Full textBai, Yidi, Xinhai Chen, Chunye Gong, and Jie Liu. "ImPINN: Improved Physics-informed neural networks for solving inverse problems." In 2024 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 189–98. IEEE, 2024. https://doi.org/10.1109/cyberc62439.2024.00041.
Full textWei, R., J. Chen, Q. Wu, H. Ren, and L. Zhong. "Plasma chemical kinetic simulation based on physics-informed neural networks." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627060.
Full textOoi, Chin Chun, Anran Huang, Zhao Wei, Shiyao Qin, Jian Cheng Wong, Pao-Hsiung Chiu, and My Ha Dao. "Importance of Nyquist-Shannon Sampling in Training of Physics-Informed Neural Networks." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650694.
Full textReports on the topic "Physics Informed Neural Networks"
Nadiga, Balasubramanya, and Robert Lowrie. Physics Informed Neural Networks as Computational Physics Emulators. Office of Scientific and Technical Information (OSTI), June 2023. http://dx.doi.org/10.2172/1985825.
Full textGuan, Jiajing, Sophia Bragdon, and Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), August 2024. http://dx.doi.org/10.21079/11681/48794.
Full textEllis, Kai, Nilanjan Banerjee, and Christopher Pierce. Modeling a Thermionic Electron Source Using a Physics-Informed Neural Network. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2008057.
Full textD'Elia, Marta, Michael L. Parks, Guofei Pang, and George Karniadakis. nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614899.
Full textPettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41034.
Full textBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Full textWells, Daniel, Benjamin Baker, and Kristine Pankow. The Feasibility of Incorporating a 3D Velocity Model Into Earthquake Location Around Salt Lake City, UT Using a Physics Informed Neural Network. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/2430497.
Full textNasr, Elhami, Tariq Shehab, Nigel Blampied, and Vinit Kanani. Estimating Models for Engineering Costs on the State Highway Operation and Protection Program (SHOPP) Portfolio of Projects. Mineta Transportation Institute, November 2024. http://dx.doi.org/10.31979/mti.2024.2365.
Full textPerdigão, Rui A. P. Neuro-Quantum Cyber-Physical Intelligence (NQCPI). Synergistic Manifolds, October 2024. http://dx.doi.org/10.46337/241024.
Full textSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, December 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Full text