Dissertations / Theses on the topic 'Physics Informed Neural Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Physics Informed Neural Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Full textMirzai, Badi. "Physics-Informed Deep Learning for System Identification of Autonomous Underwater Vehicles : A Lagrangian Neural Network Approach." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301626.
Full textI den här uppsatsen utforskas Lagrangianska Neurala Nätverk (LNN) för systemidentifiering av Autonoma Undervattensfordon (AUV) med 6 frihetsgrader. En av de största utmaningarna med AUV är deras begränsningar när det kommer till trådlös kommunikation och navigering under vatten. Ett krav för att ha fungerande AUV är deras förmåga att navigera och utföra uppdrag under okända undervattensförhållanden med begränsad och brusig sensordata. Dessutom är ett kritiskt krav för lokalisering och adaptiv reglerteknik att ha noggranna modeller av systemets olinjära dynamik, samtidigt som den dynamiska miljön i havet tas i beaktande. De flesta sådana modeller tar inte i beaktande sensordata för att reglera dess parameterar. Insamling av sådan data för AUVer är besvärligt, men nödvändigt för att skapa större flexibilitet hos modellens parametrar. Trots de senaste genombrotten inom djupinlärning är traditionella metoder av systemidentifiering dominanta än idag för AUV. Det är av dessa anledningar som vi i denna uppsats strävar efter en datadriven metod, där vi förankrar lagar från fysik under inlärningen av systemets state-space modell. Mer specifikt utforskar vi LNN för ett system med högre dimension. Vidare expanderar vi även LNN till att även ta ickekonservativa krafter som verkar på systemet i beaktande, såsom dämpning och styrsignaler. Nätverket tränas att lära sig från simulerad data från en andra ordningens differentialekvation som beskriver en AUV. Den tränade modellen utvärderas genom att iterativt integrera fram dess rörelse från olika initialstillstånd, vilket jämförs med den korrekta modellen. Resultaten visade en modell som till viss del var kapabel till att förutspå korrekt acceleration, med begränsad framgång i att lära sig korrekt rörelseriktning framåt i tiden.
Jing, Li Ph D. Massachusetts Institute of Technology. "Physical symmetry enhanced neural networks." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128294.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, February, 2020
Cataloged from student-submitted PDF version of thesis
Includes bibliographical references (pages 91-99).
Artificial Intelligence (AI), widely considered "the fourth industrial revolution", has shown its potential to fundamentally change our world. Today's AI technique relies on neural networks. In this thesis, we propose several physical symmetry enhanced neural network models. We first developed unitary recurrent neural networks (RNNs) that solve gradient vanishing and gradient explosion problems. We propose an efficient parametrization method that requires [sigma] (1) complexity per parameter. Our unitary RNN model has shown optimal long-term memory ability. Next, we combine the above model with a gated mechanism. This model outperform popular recurrent neural networks like long short-term memory (LSTMs) and gated recurrent units (GRUs) in many sequential tasks. In the third part, we develop a convolutional neural network architecture that achieves logarithmic scale complexity using symmetry breaking concepts. We demonstrate that our model has superior performance on small image classification tasks. In the last part, we propose a general method to extend convolutional neural networks' inductive bias and embed other types of symmetries. We show that this method improves prediction performance on lens-distorted image
by Li Jing.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Sutherland, Connie. "Spatio-temporal feedback in stochastic neural networks." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27559.
Full textSquadrani, Lorenzo. "Deep neural networks and thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textGyawali, Gaurav. "Solving Atomic Wave Functions Using Artificial Neural Networks." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/honors_theses/104.
Full textDüring, Alexander. "Temporal aspects of spin-glass neural networks." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325892.
Full textWu, Dawen. "Solving Some Nonlinear Optimization Problems with Deep Learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG083.
Full textThis thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi
Tolley, Emma Elizabeth. "Monte Carlo event reconstruction implemented with artificial neural networks." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65535.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 41).
I implemented event reconstruction of a Monte Carlo simulation using neural networks. The OLYMPUS Collaboration is using a Monte Carlo simulation of the OLYMPUS particle detector to evaluate systematics and reconstruct events. This simulation registers the passage of particles as 'hits' in the detector elements, which can be used to determine event parameters such as momentum and direction. However, these hits are often obscured by noise. Using Geant4 and ROOT, I wrote a program that uses artificial neural networks to separate track hits from noise and reconstruct event parameters. The classification network successfully discriminates between track hits and noise for 97.48% of events. The reconstruction networks determine the various event parameters to within 2-3%.
by Emma Elizabeth Tolley.
S.B.
Doriat, Aurélien. "Caractérisation des couplages aéro-thermo-mécaniques lors d’un vieillissement par thermo-oxydation de composites à matrice polymère soumis à un écoulement rapide et chauffé." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0018.
Full textCarbon fiber-reinforced polymer matrix composites (CFRP) are widely used in cold aeronautical structures. In aeronautical engine applications, such as fan blades, these materials can be subjected to particularly severe environmental conditions, with temperatures reaching up to 120 ◦C and airflow speeds close to Mach 1. It is well established that epoxy polymers are prone to thermo-oxidation phenomena when exposed to high temperatures.This phenomenon involves the diffusion and reaction of oxygen within the polymer, leading to color changes, antiplasticization of the material, and embrittlement. Until now, aging tests have been mainly conducted in static air ovens, providing a detailed understanding of the phenomenon under these conditions. However, the impact of airflow on thermo-oxidation remains to be explored.This study thus aims to deepen the understanding of the coupling between airflow and material degradation due to thermo-oxidation.Samples were aged in an oven under air at atmospheric pressure and in the BATH wind tunnel, adapted for these tests and capable of generating an airflow at over 150 ◦C and Mach 1, thereby reproducing the most severe usage conditions encountered in aircraft engines. This comparison between oven and wind tunnel tests showed an acceleration of aging in the wind tunnel. To achieve this result, an experimental technique based on the color change induced by oxidation was developed and used. This technique was validated with indentation tests. With this improved understanding of the accelerated aging, a coupled model between the airflow, oxidation chemistry, and changes in mechanical properties was established to better understand the interfacial mechanisms. This modeling comprises three steps. The pressure and temperature fields at the sample surface were calculated using Reynolds-Averaged Navier-Stokes (RANS) fluid simulations. Then, a mechanistic model was used to describe the chemical reactions during oxidation. Finally, based on thecolor measurements, a physics-informed neural network (PINN) was implemented to couple the chemical quantities to the mechanical properties
Penney, Richard William. "The statistical mechanics of neural networks and spin glasses." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239333.
Full textAndersson, Mikael. "Gamma-ray racking using graph neural networks." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298610.
Full textTrots att det existerar en mängd metoder för rekonstruktion av spår i specialiserade detektorer som AGATA är det av naturligt intresse att diversifiera och undersöka nya verktyg för uppgiften. I denna studie undersöktes några möjligheter inom maskininlärning, närmare bestämt inom området neurala grafnätverk. Under projektets gång simulerades data av fotoner i en ihålig, sfärisk geometri av germanium i Geant4. Den simulerade datan är begränsad till energier under parproduktion så datan består av reaktioner genom den fotoelektriska effekten och comptonspridning. Den variabla storleken på denna data och dess spridning i detektorns geometri lämpar sig för ett grafformat med nod och länkstruktur. Ett neuralt grafnätverk (GNN) implementerades och tränades på data med gamma av variabel multiplicitet och energi och evaluerades på ett urval prestandaparametrar och dess förmåga att generera ett användbart spektra. Slutresultatet involverade en länkklassificerings modell tränat på data med 10^6 spår sammanslagna till händelser. Nätverket återkallade 95 procent av positiva länkar för ett val av tröskelvärde i fallet med oändlig upplösning med ett peak-to-total på 68 procent för packad data behandlad med osäkerhet i energi och position motsvarande fallet med begränsad upplösning.
Andersson, Mikael. "Gamma-ray tracking using graph neural networks." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298610.
Full textTrots att det existerar en mängd metoder för rekonstruktion av spår i specialiserade detektorer som AGATA är det av naturligt intresse att diversifiera och undersöka nya verktyg för uppgiften. I denna studie undersöktes några möjligheter inom maskininlärning, närmare bestämt inom området neurala grafnätverk. Under projektets gång simulerades data av fotoner i en ihålig, sfärisk geometri av germanium i Geant4. Den simulerade datan är begränsad till energier under parproduktion så datan består av reaktioner genom den fotoelektriska effekten och comptonspridning. Den variabla storleken på denna data och dess spridning i detektorns geometri lämpar sig för ett grafformat med nod och länkstruktur. Ett neuralt grafnätverk (GNN) implementerades och tränades på data med gamma av variabel multiplicitet och energi och evaluerades på ett urval prestandaparametrar och dess förmåga att generera ett användbart spektra. Slutresultatet involverade en länkklassificerings modell tränat på data med 10^6 spår sammanslagna till händelser. Nätverket återkallade 95 procent av positiva länkar för ett val av tröskelvärde i fallet med oändlig upplösning med ett peak-to-total på 68 procent för packad data behandlad med osäkerhet i energi och position motsvarande fallet med begränsad upplösning.
Cardoso, Mário. "Study of pattern recognition of particle tracks with neural networks." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454374.
Full textSkirlo, Scott Alexander. "Photonics for technology : circuits, chip-scale LIDAR, and optical neural networks." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112519.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-175).
This thesis focuses on a wide range of contemporary topics in modern electromagnetics and technology including topologically protected one-way modes, integrated photonic LIDAR, and optical neural networks. First, we numerically investigate large Chern numbers in photonic crystals and explore their origin from simultaneously gapping multiple band degeneracies. Following this, we perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Bandgaps with large Chern numbers of 2, 3, and 4 are present in the experimental results 'which show excellent agreement with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose number and direction match our Chern number calculations. We use these waveguides to realize reflectionless power splitters and outline their application to general one-way circuits. Next we create a new chip-scale LIDAR architecture in analogy to planar RF lenses. Instead of relying upon many continuously tuned thermal phase shifters to implement nonmechanical beam steering, we use aplanatic lenses excited in their focal plane feeding ID gratings to generate discrete beams. We design devices which support up to 128 resolvable points in-plane and 80 resolvable points out-of-plane, which are currently being fabricated and tested. These devices have many advantages over conventional optical phased arrays including greatly increased optical output power and decreased electrical power for in-plane beamforming. Finally we explore a new approach for implementing convolutional neural networks through an integrated photonics circuit consisting of Mach-Zehnder Interferometers, optical delay lines, and optical nonlinearity units. This new platform, should be able to perform the order of a thousand inferences per second, at [mu]J power levels per inference, with the nearest state of the art ASIC and GPU competitors operating 30 times slower and requiring three orders of magnitude more power.
by Scott Alexander Skirlo.
Ph. D.
Macpherson, Keith P. "Prediction of solar and geomagnetic activity using artificial neural networks." Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296375.
Full textDavila, Carlos Antonio. "Image super-resolution performance of multilayer feedforward neural networks." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284549.
Full textHodges, Jonathan Lee. "Predicting Large Domain Multi-Physics Fire Behavior Using Artificial Neural Networks." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/86364.
Full textPh. D.
The National Fire Protection Agency estimates the total cost of fire in the United States at $300 billion annually. In 2017 alone, there were 3,400 civilian fire fatalities, 14,670 civilian fire injuries, and an estimated $23 billion direct property loss in the United States. Large scale fires in the wildland urban interface (WUI) and in large buildings still represent a significant hazard to life, property, and the environment. Researchers and fire safety engineers often use computer simulations to predict the behavior of a fire to assist in reducing the hazard of fire. Unfortunately, typical simulations of fire scenarios may take hours, days, or even weeks to run which limits their use to small areas or sections of buildings. A new method is to use a machine learning approach which uses artificial neural networks (ANNs) to represent underlying connections between data to make new predictions of fire behavior. Inspired by advancements in the field of image processing, this research developed a procedure to use machine learning to make rapid high resolution predictions of fire behavior. An ANN was developed to predict the perimeter of a wildland fire six hours in the future based on a set of images corresponding to the landscape, weather, and current fire perimeter, all of which can be obtained directly from measurements (US Geological Survey, Automated Surface Observation System, and satellites). In addition, an ANN was developed to predict high-resolution temperature and velocity fields within a floor of a building based on predictions from a coarse model. The data for use in training and testing these networks was generated using high-resolution fire simulations. Overall, the network predictions agree well with simulation predictions for new scenarios. In addition, the time to run the model is 10,000x faster than the typical simulations. The work presented herein represents a first step in developing high resolution computer simulations for different fire scenarios that run very quickly.
Ajay, Anurag. "Augmenting physics simulators with neural networks for model learning and control." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122747.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 77-81).
Physics simulators play an important role in robot state estimation, planning and control; however, many real-world control problems involve complex contact dynamics that cannot be characterized analytically. Therefore, most physics simulators employ approximations that lead to a loss in precision. We propose a hybrid dynamics model, combining a deterministic physical simulator with a stochastic neural network for dynamics modeling as it provides us with expressiveness, efficiency, and generalizability simultaneously. To demonstrate this, we compare our hybrid model to both purely analytical models and purely learned models. We then show that our model is able to characterize the complex distribution of object trajectories and compare it with existing methods. We further build in object based representation into the neural network so that our hybrid model can generalize across number of objects. Finally, we use our hybrid model to complete complex control tasks in simulation and on a real robot and show that our model generalizes to novel environments with varying object shapes and materials.
by Anurag Ajay.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Sánchez, Carlos Andrés. "Measurement of the Top Quark Mass with Neural Networks." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039046089.
Full textRoy, Chandan. "An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting." Doctoral thesis, Linköpings universitet, Interaktiva och kognitiva system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123198.
Full textRosten, David Paul 1967. "Automatic design of a decision tree classifier employing neural networks." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277881.
Full textStevenson, King Douglas Beverley. "Robust hardware elements for weightless artificial neural networks." Thesis, University of Central Lancashire, 2000. http://clok.uclan.ac.uk/1884/.
Full textHedström, Lucas. "Classifying the rotation of bacteria using neural networks." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160518.
Full textBakterier kan snabbt sprida sig genom människokroppen, vilket försvårar starkt möjligheterna att kurera vissa sjukdomar. För att få en inblick i hur bakterier kan initiera och utvecklas till en infektion används som mall laborativa uppställningar med vätskekanaler i mikroskala när man söker förstå hur bakterier reagerar på olika typer av flöden. Att spåra dessa rörelser med god säkerhet är dock en utmaning, då man experimentellt söker fånga små skalor med hög upplösning, som sedan ska analyseras med datorintensiva metoder. Populära avbildningsmetoder använder sig utav digital holografisk mikroskopi, där tredimensionella rörelser kan fångas med hjälp av tvådimensionella bilder genom att numeriskt återskapa ljusets brytningsmönster mot objekten. Eftersom dessa metoder blir beräkningstunga när god säkerhet krävs så utforskar detta examensarbete möjligheterna att utnyttja faltningsnätverk för att snabbt och säkert bestämma vertikalrotationen hos bakterier avbildade med holografi. Genom nogranna tester av moderna samt äldre nätverk så presenteras en ny nätverksdesign, utvecklad i mål med att eliminera så många avbildningsproblem som möjligt. Vi fann att vissa designval vid nätverksutvecklingen kan hjälpa med att reducera klassificeringsfelen givet vårt system, och med en väl utvald träningsmängd med lämpliga justeringar så lyckades vi nå en klassificeringssäkerhet på över 60% med vissa nätverk. På grund av bristande experimentellt data där de riktiga värdena är kända så har ingen utförlig experimentell analys utförts, men några tester på experimentella bilder i god kvalité har visats ge resultat som tyder på en korrekt analys inom den förväntade vertikalrotationen.
Rigon, Luca. "Development of an intelligent trigger system based on deep neural networks." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446864.
Full textCiobanu, Cătălin Irinel. "A neural networks search for single top quark production in CDF Run I Data /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486461246815552.
Full textMignacco, Francesca. "Statistical physics insights on the dynamics and generalisation of artificial neural networks." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASP074.
Full textMachine learning technologies have become ubiquitous in our daily lives. However, this field still remains largely empirical and its scientific stakes lack a deep theoretical understanding.This thesis explores the mechanisms underlying learning in artificial neural networks through the prism of statistical physics. In the first part, we focus on the static properties of learning problems, that we introduce in Chapter 1.1. In Chapter 1.2, we consider the prototype classification of a binary mixture of Gaussian clusters and we derive rigorous closed-form expressions for the errors in the infinite-dimensional regime, that we apply to shed light on the role of different problem parameters. In Chapter 1.3, we show how to extend the teacher-student perceptron model to encompass multi-class classification deriving asymptotic expressions for the optimal performance and the performance of regularised empirical risk minimisation. In the second part, we turn our focus to the dynamics of learning, that we introduce in Chapter 2.1. In Chapter 2.2, we show how to track analytically the training dynamics of multi-pass stochastic gradient descent (SGD) via dynamical mean-field theory for generic non convex loss functions and Gaussian mixture data. Chapter 2.3 presents a late-time analysis of the effective noise introduced by SGD in the underparametrised and overparametrised regimes. In Chapter 2.4, we take the sign retrieval problem as a benchmark highly non-convex optimisation problem and show that stochasticity is crucial to achieve perfect generalisation. The third part of the thesis contains the conclusions and some future perspectives
Harris, William H. (William Hunt). "Machine learning transferable physics-based force fields using graph convolutional neural networks." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128979.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 22-24).
Molecular dynamics and Monte Carlo methods allow the properties of a system to be determined from its potential energy surface (PES). In the domain of crystalline materials, the PES is needed for electronic structure calculations, critical for modeling semiconductors, optical, and energy-storage materials. While first principles techniques can be used to obtain the PES to high accuracy, their computational complexity limits applications to small systems and short timescales. In practice, the PES must be approximated using a computationally cheaper functional form. Classical force field (CFF) approaches simply define the PES as a sum over independent energy contributions. Commonly included terms include bonded (pair, angle, dihedral, etc.) and non bonded (van der Waals, Coulomb, etc.) interactions, while more recent CFFs model polarizability, reactivity, and other higher-order interactions.
Simple, physically-justified functional forms are often implemented for each energy type, but this choice - and the choice of which energy terms to include in the first place - is arbitrary and often hand-tuned on a per-system basis, severely limiting PES transferability. This flexibility has complicated the quest for a universal CFF. The simplest usable CFFs are tailored to specific classes of molecules and have few parameters, so that they can be optimally parameterized using a small amount of data; however, they suffer low transferability. Highly-parameterized neural network potentials can yield predictions that are extremely accurate for the entire training set; however, they suffer over-fitting and cannot interpolate.
We develop a tool, called AuTopology, to explore the trade-offs between complexity and generalizability in fitting CFFs; focus on simple, computationally fast functions that enforce physics-based regularization and transferability; use message-passing neural networks to featurized molecular graphs and interpolate CFF parameters across chemical space; and utilize high performance computing resources to improve the efficiency of model training and usage. A universal, fast CFF would open the door to high-throughput virtual materials screening in the pursuit of novel materials with tailored properties.
by William H. Harris.
S.M.
S.M. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Watkin, Timothy L. H. "The theory of quenched disorder : spin glasses, neural networks and statistical inference." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315731.
Full textReis, Elohim Fonseca dos 1984. "Criticality in neural networks = Criticalidade em redes neurais." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276917.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-29T15:40:55Z (GMT). No. of bitstreams: 1 Reis_ElohimFonsecados_M.pdf: 2277988 bytes, checksum: 08f2c3b84a391217d575c0f425159fca (MD5) Previous issue date: 2015
Resumo: Este trabalho é dividido em duas partes. Na primeira parte, uma rede de correlação é construída baseada em um modelo de Ising em diferentes temperaturas, crítica, subcrítica e supercrítica, usando um algorítimo de Metropolis Monte-Carlo com dinâmica de \textit{single-spin-flip}. Este modelo teórico é comparado com uma rede do cérebro construída a partir de correlações das séries temporais do sinal BOLD de fMRI de regiões do cérebro. Medidas de rede, como coeficiente de aglomeração, mínimo caminho médio e distribuição de grau são analisadas. As mesmas medidas de rede são calculadas para a rede obtida pelas correlações das séries temporais dos spins no modelo de Ising. Os resultados da rede cerebral são melhor explicados pelo modelo teórico na temperatura crítica, sugerindo aspectos de criticalidade na dinâmica cerebral. Na segunda parte, é estudada a dinâmica temporal da atividade de um população neural, ou seja, a atividade de células ganglionares da retina gravadas em uma matriz de multi-eletrodos. Vários estudos têm focado em descrever a atividade de redes neurais usando modelos de Ising com desordem, não dando atenção à estrutura dinâmica. Tratando o tempo como uma dimensão extra do sistema, a dinâmica temporal da atividade da população neural é modelada. O princípio de máxima entropia é usado para construir um modelo de Ising com interação entre pares das atividades de diferentes neurônios em tempos diferentes. O ajuste do modelo é feito com uma combinação de amostragem de Monte-Carlo e método do gradiente descendente. O sistema é caracterizado pelos parâmetros aprendidos, questões como balanço detalhado e reversibilidade temporal são analisadas e variáveis termodinâmicas, como o calor específico, podem ser calculadas para estudar aspectos de criticalidade
Abstract: This work is divided in two parts. In the first part, a correlation network is build based on an Ising model at different temperatures, critical, subcritical and supercritical, using a Metropolis Monte-Carlo algorithm with single-spin-flip dynamics. This theoretical model is compared with a brain network built from the correlations of BOLD fMRI temporal series of brain regions activity. Network measures, such as clustering coefficient, average shortest path length and degree distributions are analysed. The same network measures are calculated to the network obtained from the time series correlations of the spins in the Ising model. The results from the brain network are better explained by the theoretical model at the critical temperature, suggesting critical aspects in the brain dynamics. In the second part, the temporal dynamics of the activity of a neuron population, that is, the activity of retinal ganglion cells recorded in a multi-electrode array was studied. Many studies have focused on describing the activity of neural networks using disordered Ising models, with no regard to the dynamic nature. Treating time as an extra dimension of the system, the temporal dynamics of the activity of the neuron population is modeled. The maximum entropy principle approach is used to build an Ising model with pairwise interactions between the activities of different neurons at different times. Model fitting is performed by a combination of Metropolis Monte Carlo sampling with gradient descent methods. The system is characterized by the learned parameters, questions like detailed balance and time reversibility are analysed and thermodynamic variables, such as specific heat, can be calculated to study critical aspects
Mestrado
Física
Mestre em Física
2013/25361-6
FAPESP
Varas, Jaime Armando. "Employment of neural networks in the estimation of impact parameters." Thesis, The University of Sydney, 2002. https://hdl.handle.net/2123/27885.
Full textBattista, Aldo. "Low-dimensional continuous attractors in recurrent neural networks : from statistical physics to computational neuroscience." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE012.
Full textHow sensory information is encoded and processed by neuronal circuits is a central question in computational neuroscience. In many brain areas, the activity of neurons is found to depend strongly on some continuous sensory correlate; examples include simple cells in the V1 area of the visual cortex coding for the orientation of a bar presented to the retina, and head direction cells in the subiculum or place cells in the hippocampus, whose activities depend, respectively, on the orientation of the head and the position of an animal in the physical space. Over the past decades, continuous attractor neural networks were introduced as an abstract model for the representation of a few continuous variables in a large population of noisy neurons. Through an appropriate set of pairwise interactions between the neurons, the dynamics of the neural network is constrained to span a low-dimensional manifold in the high-dimensional space of activity configurations, and thus codes for a few continuous coordinates on the manifold, corresponding to spatial or sensory information. While the original model was based on how to build a single continuous manifold in an high-dimensional space, it was soon realized that the same neural network should code for many distinct attractors, {em i.e.}, corresponding to different spatial environments or contextual situations. An approximate solution to this harder problem was proposed twenty years ago, and relied on an ad hoc prescription for the pairwise interactions between neurons, summing up the different contributions corresponding to each single attractor taken independently of the others. This solution, however, suffers from two major issues: the interference between maps strongly limit the storage capacity, and the spatial resolution within a map is not controlled. In the present manuscript, we address these two issues. We show how to achieve optimal storage of continuous attractors and study the optimal trade-off between capacity and spatial resolution, that is, how the requirement of higher spatial resolution affects the maximal number of attractors that can be stored, proving that recurrent neural networks are very efficient memory devices capable of storing many continuous attractors at high resolution. In order to tackle these problems we used a combination of techniques from statistical physics of disordered systems and random matrix theory. On the one hand we extended Gardner's theory of learning to the case of patterns with strong spatial correlations. On the other hand we introduced and studied the spectral properties of a new ensemble of random matrices, {em i.e.}, the additive superimposition of an extensive number of independent Euclidean random matrices in the high-density regime. In addition, this approach defines a concrete framework to address many questions, in close connection with ongoing experiments, related in particular to the discussion of the random remapping hypothesis and to the coding of spatial information and the development of brain circuits in young animals. Finally, we discuss a possible mechanism for the learning of continuous attractors from real images
Ronchi, Emanuele. "Neural Networks Applications and Electronics Development for Nuclear Fusion Neutron Diagnostics." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108583.
Full textSung, Woong Je. "A neural network construction method for surrogate modeling of physics-based analysis." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43721.
Full textPusuluri, Sai Teja. "Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1490116134938074.
Full textEricsson, Oscar. "Investigations into neutrino flavor reconstruction from radio detector data using convolutional neural networks." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449503.
Full textPosani, Lorenzo. "Inference and modeling of biological networks : a statistical-physics approach to neural attractors and protein fitness landscapes." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE043/document.
Full textThe recent advent of high-throughput experimental procedures has opened a new era for the quantitative study of biological systems. Today, electrophysiology recordings and calcium imaging allow for the in vivo simultaneous recording of hundreds to thousands of neurons. In parallel, thanks to automated sequencing procedures, the libraries of known functional proteins expanded from thousands to millions in just a few years. This current abundance of biological data opens a new series of challenges for theoreticians. Accurate and transparent analysis methods are needed to process this massive amount of raw data into meaningful observables. Concurrently, the simultaneous observation of a large number of interacting units enables the development and validation of theoretical models aimed at the mechanistic understanding of the collective behavior of biological systems. In this manuscript, we propose an approach to both these challenges based on methods and models from statistical physics. We present an application of these methods to problems from neuroscience and bioinformatics, focusing on (1) the spatial memory and navigation task in the hippocampal loop and (2) the reconstruction of the fitness landscape of proteins from homologous sequence data
Grose, Mitchell. "Forecasting Atmospheric Turbulence Conditions From Prior Environmental Parameters Using Artificial Neural Networks: An Ensemble Study." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1619632748733788.
Full textCanaday, Daniel M. "Modeling and Control of Dynamical Systems with Reservoir Computing." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu157469471458874.
Full textMeseguer, Brocal Gabriel. "Multimodal analysis : informed content estimation and audio source separation." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS111.
Full textThis dissertation proposes the study of multimodal learning in the context of musical signals. Throughout, we focus on the interaction between audio signals and text information. Among the many text sources related to music that can be used (e.g. reviews, metadata, or social network feedback), we concentrate on lyrics. The singing voice directly connects the audio signal and the text information in a unique way, combining melody and lyrics where a linguistic dimension complements the abstraction of musical instruments. Our study focuses on the audio and lyrics interaction for targeting source separation and informed content estimation. Real-world stimuli are produced by complex phenomena and their constant interaction in various domains. Our understanding learns useful abstractions that fuse different modalities into a joint representation. Multimodal learning describes methods that analyse phenomena from different modalities and their interaction in order to tackle complex tasks. This results in better and richer representations that improve the performance of the current machine learning methods. To develop our multimodal analysis, we need first to address the lack of data containing singing voice with aligned lyrics. This data is mandatory to develop our ideas. Therefore, we investigate how to create such a dataset automatically leveraging resources from the World Wide Web. Creating this type of dataset is a challenge in itself that raises many research questions. We are constantly working with the classic ``chicken or the egg'' problem: acquiring and cleaning this data requires accurate models, but it is difficult to train models without data. We propose to use the teacher-student paradigm to develop a method where dataset creation and model learning are not seen as independent tasks but rather as complementary efforts. In this process, non-expert karaoke time-aligned lyrics and notes describe the lyrics as a sequence of time-aligned notes with their associated textual information. We then link each annotation to the correct audio and globally align the annotations to it. For this purpose, we use the normalized cross-correlation between the voice annotation sequence and the singing voice probability vector automatically, which is obtained using a deep convolutional neural network. Using the collected data we progressively improve that model. Every time we have an improved version, we can in turn correct and enhance the data
SAGLIETTI, LUCA. "Out of equilibrium Statistical Physics of learning." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710532.
Full textMarginean, Radu. "Measurement of the top pair production cross section at CDF using neural networks." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1101831484.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiii, 110 p.; also includes graphics (some col.). Includes bibliographical references (p. 106-110).
Zhao, Ruiguang. "Development of a CMOS pixel sensor with on-chip artificial neural networks." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE050.
Full textIn the vertex detector of the ILC (International Linear Collider), a large number of extra hits will be generated by electrons coming from the beam background. Momenta of these background electrons typically are lower than particles coming from physics events. Our group in IPHC has proposed the concept of a CMOS pixel sensor with on-chip ANNs to tag and remove hits generated by background particles.During my PhD thesis, I focused on the study of a CMOS pixel sensor with on-chip ANNs from the following aspects :1. The implementation of preprocessing modules and an ANN in an FPGA device for the feasibility study ;2. An on-chip algorithm for cluster search which is a part of preprocessing modules has been proposed to integrate into the ASIC design
Grassia, Filippo. "Silicon neural networks : implementation of cortical cells to improve the artificial-biological hybrid technique." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00789406.
Full textColombini, Giulio. "Synchronisation phenomena in complex neuronal networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23904/.
Full textVorvolakos, Angelos. "Artificial neural network methods in high energy physics and their application to the identification of quark and gluon jets in electroproton collisions." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314217.
Full textDeans, Christopher Scott. "Closure tested parton distributions for the LHC." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20375.
Full textMeenakshisundaram, Venkatesh. "ELUCIDATING PHYSICS OF SEQUENCE-SPECIFIC POLYMERS AND THE GLASS TRANSITION VIA EVOLUTIONARY COMPUTATIONAL DESIGN." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1513717453745275.
Full textGullstrand, Mattias, and Stefan Maraš. "Using Graph Neural Networks for Track Classification and Time Determination of Primary Vertices in the ATLAS Experiment." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288505.
Full textFrån och med 2027 kommer \textit{high-luminosity Large Hadron Collider} (HL-LHC) att tas i drift och möjliggöra mätningar med högre precision och utforskningar av nya fysikprocesser mellan elementarpartiklar. Ett centralt problem som uppstår i ATLAS-detektorn vid rekonstruktionen av partikelkollisioner är att separera sällsynta och intressanta interaktioner, så kallade \textit{hard-scatters} (HS) från ointressanta \textit{pileup}-interaktioner (PU) i den kompakta rumsliga dimensionen. Svårighetsgraden för detta problem ökar vid högre luminositeter. Med hjälp av den kommande \textit{High-Granularity Timing-detektorns} (HGTD) mätningar kommer även tidsinformation relaterat till interaktionerna att erhållas. I detta projekt används denna information för att beräkna tiden för enskillda interaktioner vilket därmed kan användas för att separera HS-interaktioner från PU-interaktioner. Den nuvarande metoden använder en trädregressionsmetod, s.k. boosted decision tree (BDT) tillsammans med tidsinformationen från HGTD för att bestämma en tid. Vi föreslår ett nytt tillvägagångssätt baserat på ett s.k. uppvaktande grafnätverk (GAT), där varje protonkollision representeras som en graf över partikelspåren och där GAT-egenskaperna tillämpas på spårnivå. Våra resultat visar att vi kan replikera de BDT-baserade resultaten och till och med förbättra resultaten på bekostnad av att öka osäkerheten i tidsbestämningarna. Vi drar slutsatsen att även om det finns potential för GAT-modeller att överträffa BDT-modeller, bör mer komplexa versioner av de förra tillämpas. Vi ger slutligen några förbättringsförslag som vi hoppas ska kunna inspirera till ytterligare studier och framsteg inom detta område, vilket visar lovande potential.
Mukherjee, Rajaditya. "Accelerating Data-driven Simulations for Deformable Bodies and Fluids." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523634514740489.
Full text