Journal articles on the topic 'Physics Informed Neural Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Physics Informed Neural Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Trahan, Corey, Mark Loveland, and Samuel Dent. "Quantum Physics-Informed Neural Networks." Entropy 26, no. 8 (July 30, 2024): 649. http://dx.doi.org/10.3390/e26080649.
Full textHofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard, and Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries." Journal of The Electrochemical Society 170, no. 9 (September 1, 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Full textPang, Guofei, Lu Lu, and George Em Karniadakis. "fPINNs: Fractional Physics-Informed Neural Networks." SIAM Journal on Scientific Computing 41, no. 4 (January 2019): A2603—A2626. http://dx.doi.org/10.1137/18m1229845.
Full textSong, Yanjie, He Wang, He Yang, Maria Luisa Taccari, and Xiaohui Chen. "Loss-attentional physics-informed neural networks." Journal of Computational Physics 501 (March 2024): 112781. http://dx.doi.org/10.1016/j.jcp.2024.112781.
Full textRojas, Sergio, Paweł Maczuga, Judit Muñoz-Matute, David Pardo, and Maciej Paszyński. "Robust Variational Physics-Informed Neural Networks." Computer Methods in Applied Mechanics and Engineering 425 (May 2024): 116904. http://dx.doi.org/10.1016/j.cma.2024.116904.
Full textHenkes, Alexander, Henning Wessels, and Rolf Mahnken. "Physics informed neural networks for continuum micromechanics." Computer Methods in Applied Mechanics and Engineering 393 (April 2022): 114790. http://dx.doi.org/10.1016/j.cma.2022.114790.
Full textChen, Haotian, Enno Kätelhön, and Richard G. Compton. "Predicting Voltammetry Using Physics-Informed Neural Networks." Journal of Physical Chemistry Letters 13, no. 2 (January 10, 2022): 536–43. http://dx.doi.org/10.1021/acs.jpclett.1c04054.
Full textLee, Sang-Min. "Physics-Informed Neural Networks and its Applications." Journal of the Korea Academia-Industrial cooperation Society 23, no. 12 (December 31, 2022): 755–60. http://dx.doi.org/10.5762/kais.2022.23.12.755.
Full textSon, Hwijae, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. "Sobolev training for physics-informed neural networks." Communications in Mathematical Sciences 21, no. 6 (2023): 1679–705. http://dx.doi.org/10.4310/cms.2023.v21.n6.a11.
Full textOmar, Sara Ibrahim, Chen Keasar, Ariel J. Ben-Sasson, and Eldad Haber. "Protein Design Using Physics Informed Neural Networks." Biomolecules 13, no. 3 (March 1, 2023): 457. http://dx.doi.org/10.3390/biom13030457.
Full textCoscia, Dario, Anna Ivagnes, Nicola Demo, and Gianluigi Rozza. "Physics-Informed Neural networks for Advanced modeling." Journal of Open Source Software 8, no. 87 (July 19, 2023): 5352. http://dx.doi.org/10.21105/joss.05352.
Full textYang, Jianchuan, Xuanqi Liu, Yu Diao, Xi Chen, and Haikuo Hu. "Adaptive task decomposition physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering 418 (January 2024): 116561. http://dx.doi.org/10.1016/j.cma.2023.116561.
Full textHanna, John M., José V. Aguado, Sebastien Comas-Cardona, Ramzi Askri, and Domenico Borzacchiello. "Sensitivity analysis using Physics-informed neural networks." Engineering Applications of Artificial Intelligence 135 (September 2024): 108764. http://dx.doi.org/10.1016/j.engappai.2024.108764.
Full textKenzhebek, Y., T. S. Imankulov, and D. Zh Akhmed-Zaki. "PREDICTION OF OIL PRODUCTION USING PHYSICS-INFORMED NEURAL NETWORKS." BULLETIN Series of Physics & Mathematical Sciences 76, no. 4 (December 15, 2021): 45–50. http://dx.doi.org/10.51889/2021-4.1728-7901.06.
Full textOluwasakin, Ebenezer O., and Abdul Q. M. Khaliq. "Optimizing Physics-Informed Neural Network in Dynamic System Simulation and Learning of Parameters." Algorithms 16, no. 12 (November 28, 2023): 547. http://dx.doi.org/10.3390/a16120547.
Full textRodríguez, Alexander, Jiaming Cui, Naren Ramakrishnan, Bijaya Adhikari, and B. Aditya Prakash. "EINNs: Epidemiologically-Informed Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (June 26, 2023): 14453–60. http://dx.doi.org/10.1609/aaai.v37i12.26690.
Full textKarakonstantis, Xenofon, and Efren Fernandez-Grande. "Advancing sound field analysis with physics-informed neural networks." Journal of the Acoustical Society of America 154, no. 4_supplement (October 1, 2023): A98. http://dx.doi.org/10.1121/10.0022920.
Full textAntonion, Klapa, Xiao Wang, Maziar Raissi, and Laurn Joshie. "Machine Learning Through Physics–Informed Neural Networks: Progress and Challenges." Academic Journal of Science and Technology 9, no. 1 (January 20, 2024): 46–49. http://dx.doi.org/10.54097/b1d21816.
Full textHooshyar, Saman, and Arash Elahi. "Sequencing Initial Conditions in Physics-Informed Neural Networks." Journal of Chemistry and Environment 3, no. 1 (March 26, 2024): 98–108. http://dx.doi.org/10.56946/jce.v3i1.345.
Full textPu, Ruilong, and Xinlong Feng. "Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation." Entropy 24, no. 8 (August 11, 2022): 1106. http://dx.doi.org/10.3390/e24081106.
Full textZhai, Hanfeng, Quan Zhou, and Guohui Hu. "Predicting micro-bubble dynamics with semi-physics-informed deep learning." AIP Advances 12, no. 3 (March 1, 2022): 035153. http://dx.doi.org/10.1063/5.0079602.
Full textHassanaly, Malik, Peter J. Weddle, Corey R. Randall, Eric J. Dufek, and Kandler Smith. "Rapid Inverse Parameter Inference Using Physics-Informed Neural Networks." ECS Meeting Abstracts MA2024-01, no. 2 (August 9, 2024): 345. http://dx.doi.org/10.1149/ma2024-012345mtgabs.
Full textHall, Eric J., Søren Taverniers, Markos A. Katsoulakis, and Daniel M. Tartakovsky. "GINNs: Graph-Informed Neural Networks for multiscale physics." Journal of Computational Physics 433 (May 2021): 110192. http://dx.doi.org/10.1016/j.jcp.2021.110192.
Full textMishra, Siddhartha, and Roberto Molinaro. "Physics informed neural networks for simulating radiative transfer." Journal of Quantitative Spectroscopy and Radiative Transfer 270 (August 2021): 107705. http://dx.doi.org/10.1016/j.jqsrt.2021.107705.
Full textWaheed, Umair bin, Ehsan Haghighat, Tariq Alkhalifah, Chao Song, and Qi Hao. "PINNeik: Eikonal solution using physics-informed neural networks." Computers & Geosciences 155 (October 2021): 104833. http://dx.doi.org/10.1016/j.cageo.2021.104833.
Full textSong, Chao, and Tariq A. Alkhalifah. "Wavefield Reconstruction Inversion via Physics-Informed Neural Networks." IEEE Transactions on Geoscience and Remote Sensing 60 (2022): 1–12. http://dx.doi.org/10.1109/tgrs.2021.3123122.
Full textShukla, Khemraj, Ameya D. Jagtap, and George Em Karniadakis. "Parallel physics-informed neural networks via domain decomposition." Journal of Computational Physics 447 (December 2021): 110683. http://dx.doi.org/10.1016/j.jcp.2021.110683.
Full textKovacs, Alexander, Lukas Exl, Alexander Kornell, Johann Fischbacher, Markus Hovorka, Markus Gusenbauer, Leoni Breth, et al. "Magnetostatics and micromagnetics with physics informed neural networks." Journal of Magnetism and Magnetic Materials 548 (April 2022): 168951. http://dx.doi.org/10.1016/j.jmmm.2021.168951.
Full textPenwarden, Michael, Shandian Zhe, Akil Narayan, and Robert M. Kirby. "Multifidelity modeling for Physics-Informed Neural Networks (PINNs)." Journal of Computational Physics 451 (February 2022): 110844. http://dx.doi.org/10.1016/j.jcp.2021.110844.
Full textBolderman, M., D. Fan, M. Lazar, and H. Butler. "Generalized feedforward control using physics—informed neural networks." IFAC-PapersOnLine 55, no. 16 (2022): 148–53. http://dx.doi.org/10.1016/j.ifacol.2022.09.015.
Full textYang, Yibo, and Paris Perdikaris. "Adversarial uncertainty quantification in physics-informed neural networks." Journal of Computational Physics 394 (October 2019): 136–52. http://dx.doi.org/10.1016/j.jcp.2019.05.027.
Full textMao, Zhiping, Ameya D. Jagtap, and George Em Karniadakis. "Physics-informed neural networks for high-speed flows." Computer Methods in Applied Mechanics and Engineering 360 (March 2020): 112789. http://dx.doi.org/10.1016/j.cma.2019.112789.
Full textJin, Ge, Jian Cheng Wong, Abhishek Gupta, Shipeng Li, and Yew-Soon Ong. "Fourier warm start for physics-informed neural networks." Engineering Applications of Artificial Intelligence 132 (June 2024): 107887. http://dx.doi.org/10.1016/j.engappai.2024.107887.
Full textAnagnostopoulos, Sokratis J., Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Karniadakis. "Residual-based attention in physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering 421 (March 2024): 116805. http://dx.doi.org/10.1016/j.cma.2024.116805.
Full textWang, Sifan, Shyam Sankaran, and Paris Perdikaris. "Respecting causality for training physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering 421 (March 2024): 116813. http://dx.doi.org/10.1016/j.cma.2024.116813.
Full textLiu, Ziti, Yang Liu, Xunshi Yan, Wen Liu, Shuaiqi Guo, and Chen-an Zhang. "AsPINN: Adaptive symmetry-recomposition physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering 432 (December 2024): 117405. http://dx.doi.org/10.1016/j.cma.2024.117405.
Full textHou, Shubo, Wenchao Wu, and Xiuhong Hao. "Physics-informed neural network for simulating magnetic field of permanent magnet." Journal of Physics: Conference Series 2853, no. 1 (October 1, 2024): 012018. http://dx.doi.org/10.1088/1742-6596/2853/1/012018.
Full textLee, Brandon M., and David R. Dowling. "Training physics-informed neural networks to directly predict acoustic field values in simple environments." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A49. http://dx.doi.org/10.1121/10.0015499.
Full textStenkin, Dmitry, and Vladimir Gorbachenko. "Mathematical Modeling on a Physics-Informed Radial Basis Function Network." Mathematics 12, no. 2 (January 11, 2024): 241. http://dx.doi.org/10.3390/math12020241.
Full textLeontiou, Theodoros, Anna Frixou, Marios Charalambides, Efstathios Stiliaris, Costas N. Papanicolas, Sofia Nikolaidou, and Antonis Papadakis. "Three-Dimensional Thermal Tomography with Physics-Informed Neural Networks." Tomography 10, no. 12 (November 30, 2024): 1930–46. https://doi.org/10.3390/tomography10120140.
Full textWang, Jing, Yubo Li, Anping Wu, Zheng Chen, Jun Huang, Qingfeng Wang, and Feng Liu. "Multi-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations." Applied Sciences 14, no. 13 (June 25, 2024): 5490. http://dx.doi.org/10.3390/app14135490.
Full textKarakonstantis, Xenofon, Diego Caviedes-Nozal, Antoine Richard, and Efren Fernandez-Grande. "Room impulse response reconstruction with physics-informed deep learning." Journal of the Acoustical Society of America 155, no. 2 (February 1, 2024): 1048–59. http://dx.doi.org/10.1121/10.0024750.
Full textSchmid, Johannes. "Physics-informed neural networks for solving the Helmholtz equation." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 267, no. 1 (November 5, 2023): 265–68. http://dx.doi.org/10.3397/no_2023_0049.
Full textSchmid, Johannes D., Philipp Bauerschmidt, Caglar Gurbuz, and Steffen Marburg. "Physics-informed neural networks for characterization of structural dynamic boundary conditions." Journal of the Acoustical Society of America 154, no. 4_supplement (October 1, 2023): A99. http://dx.doi.org/10.1121/10.0022923.
Full textFarea, Amer, Olli Yli-Harja, and Frank Emmert-Streib. "Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges." AI 5, no. 3 (August 29, 2024): 1534–57. http://dx.doi.org/10.3390/ai5030074.
Full textKovacs, Alexander, Lukas Exl, Alexander Kornell, Johann Fischbacher, Markus Hovorka, Markus Gusenbauer, Leoni Breth, et al. "Conditional physics informed neural networks." Communications in Nonlinear Science and Numerical Simulation, September 2021, 106041. http://dx.doi.org/10.1016/j.cnsns.2021.106041.
Full textBerrone, S., C. Canuto, M. Pintore, and N. Sukumar. "Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks." Heliyon, August 2023, e18820. http://dx.doi.org/10.1016/j.heliyon.2023.e18820.
Full textMcClenny, Levi, and Ulisses Braga-Neto. "Self-Adaptive Physics-Informed Neural Networks." SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4086448.
Full textMcClenny, Levi D., and Ulisses Braga-Neto. "Self-adaptive physics-informed neural networks." Journal of Computational Physics, November 2022, 111722. http://dx.doi.org/10.1016/j.jcp.2022.111722.
Full textDourado, Arinan, and Felipe A. C. Viana. "Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis." Annual Conference of the PHM Society 11, no. 1 (September 22, 2019). http://dx.doi.org/10.36001/phmconf.2019.v11i1.814.
Full text