Academic literature on the topic 'Physics problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physics problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Physics problems"

1

Ramzan, Siti Hajar. "Crafting Linear Motion Problems for Problem- Based Learning Physics Classes." International Journal of Psychosocial Rehabilitation 24, no. 5 (2020): 5426–37. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Ronald D. "Problems with physics problems." Physics Teacher 27, no. 1 (1989): 8. http://dx.doi.org/10.1119/1.2342644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Van Wyk, Steve. "Physics problems for physics Teachers." Physics Teacher 27, no. 2 (1989): 115–17. http://dx.doi.org/10.1119/1.2342684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raxmatullayeva, Gulira'no Valijon qizi. "METHODS OF INCREASING STUDENT INTEREST IN PHYSICS WITH OLYMPIC PROBLEMS." "Science and Innovation" international scientific journal 1, no. 1 (2022): 1–9. https://doi.org/10.5281/zenodo.6466351.

Full text
Abstract:
<em>The article analyzes the specifics of the Olympiad problems in physics, the mathematical knowledge necessary to prepare for the Olympiad, as well as the methodology for solving some Olympiad problems.</em>
APA, Harvard, Vancouver, ISO, and other styles
5

Saitdjanov, Shavkat. "Solving Problems In Nuclear Physics." American Journal of Interdisciplinary Innovations and Research 03, no. 05 (2021): 1–6. http://dx.doi.org/10.37547/tajiir/volume03issue05-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wood, Charles. "Solving physics problems." Physics Teacher 23, no. 1 (1985): 32–33. http://dx.doi.org/10.1119/1.2341706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marzewski, Bob. "Problems in physics." Physics Teacher 26, no. 7 (1988): 480. http://dx.doi.org/10.1119/1.2342585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raxmatullayeva, Gulira'no Valijon qizi. "IMPROVEMENT OF PROBLEM SOLVING LESSONS FROM PHYSICS IN ACADEMIC LYCEUMS SPECIALIZED IN EXACT SCIENCES." "Science and innovation" international scientific journal. ISSN: 2181-3337 1, no. 3 (2022): 1012–16. https://doi.org/10.5281/zenodo.6820626.

Full text
Abstract:
<em>This article describes the problems in solving a problem from physics and their solutions in academic lyceums specialized in specific subjects. In physics, the types of issues, their general solution algorithm and the literature that is currently in use are analyzed. General conclusions were made on improving the lessons of solving the issue. </em>
APA, Harvard, Vancouver, ISO, and other styles
9

Zaitsev, V. V., and Aleksandr V. Stepanov. "Problems of solar activity physics." Uspekhi Fizicheskih Nauk 176, no. 3 (2006): 325. http://dx.doi.org/10.3367/ufnr.0176.200603h.0325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ginzburg, Il'ya F. "Unsolved problems in fundamental physics." Uspekhi Fizicheskih Nauk 179, no. 5 (2009): 525. http://dx.doi.org/10.3367/ufnr.0179.200905d.0525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Physics problems"

1

Coleman, Elaine B. "Problem-solving differences between high and average performers on physics problems." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bürger, Steven. "Inverse Autoconvolution Problems with an Application in Laser Physics." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-211850.

Full text
Abstract:
Convolution and, as a special case, autoconvolution of functions are important in many branches of mathematics and have found lots of applications, such as in physics, statistics, image processing and others. While it is a relatively easy task to determine the autoconvolution of a function (at least from the numerical point of view), the inverse problem, which consists in reconstructing a function from its autoconvolution is an ill-posed problem. Hence there is no possibility to solve such an inverse autoconvolution problem with a simple algebraic operation. Instead the problem has to be regularized, which means that it is replaced by a well-posed problem, which is close to the original problem in a certain sense. The outline of this thesis is as follows: In the first chapter we give an introduction to the type of inverse problems we consider, including some basic definitions and some important examples of regularization methods for these problems. At the end of the introduction we shortly present some general results about the convergence theory of Tikhonov-regularization. The second chapter is concerned with the autoconvolution of square integrable functions defined on the interval [0, 1]. This will lead us to the classical autoconvolution problems, where the term “classical” means that no kernel function is involved in the autoconvolution operator. For the data situation we distinguish two cases, namely data on [0, 1] and data on [0, 2]. We present some well-known properties of the classical autoconvolution operators. Moreover, we investigate nonlinearity conditions, which are required to show applicability of certain regularization approaches or which lead convergence rates for the Tikhonov regularization. For the inverse autoconvolution problem with data on the interval [0, 1] we show that a convergence rate cannot be shown using the standard convergence rate theory. If the data are given on the interval [0, 2], we can show a convergence rate for Tikhonov regularization if the exact solution satisfies a sparsity assumption. After these theoretical investigations we present various approaches to solve inverse autoconvolution problems. Here we focus on a discretized Lavrentiev regularization approach, for which even a convergence rate can be shown. Finally, we present numerical examples for the regularization methods we presented. In the third chapter we describe a physical measurement technique, the so-called SD-Spider, which leads to an inverse problem of autoconvolution type. The SD-Spider method is an approach to measure ultrashort laser pulses (laser pulses with time duration in the range of femtoseconds). Therefor we first present some very basic concepts of nonlinear optics and after that we describe the method in detail. Then we show how this approach, starting from the wave equation, leads to a kernel-based equation of autoconvolution type. The aim of chapter four is to investigate the equation and the corresponding problem, which we derived in chapter three. As a generalization of the classical autoconvolution we define the kernel-based autoconvolution operator and show that many properties of the classical autoconvolution operator can also be shown in this new situation. Moreover, we will consider inverse problems with kernel-based autoconvolution operator, which reflect the data situation of the physical problem. It turns out that these inverse problems may be locally well-posed, if all possible data are taken into account and they are locally ill-posed if one special part of the data is not available. Finally, we introduce reconstruction approaches for solving these inverse problems numerically and test them on real and artificial data.
APA, Harvard, Vancouver, ISO, and other styles
3

Kitic, Srdan. "Cosparse regularization of physics-driven inverse problems." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S152/document.

Full text
Abstract:
Les problèmes inverses liés à des processus physiques sont d'une grande importance dans la plupart des domaines liés au traitement du signal, tels que la tomographie, l'acoustique, les communications sans fil, le radar, l'imagerie médicale, pour n'en nommer que quelques uns. Dans le même temps, beaucoup de ces problèmes soulèvent des défis en raison de leur nature mal posée. Par ailleurs, les signaux émanant de phénomènes physiques sont souvent gouvernées par des lois s'exprimant sous la forme d'équations aux dérivées partielles (EDP) linéaires, ou, de manière équivalente, par des équations intégrales et leurs fonctions de Green associées. De plus, ces phénomènes sont habituellement induits par des singularités, apparaissant comme des sources ou des puits d'un champ vectoriel. Dans cette thèse, nous étudions en premier lieu le couplage entre de telles lois physiques et une hypothèse initiale de parcimonie des origines du phénomène physique. Ceci donne naissance à un concept de dualité des régularisations, formulées soit comme un problème d'analyse coparcimonieuse (menant à la représentation en EDP), soit comme une parcimonie à la synthèse équivalente à la précédente (lorsqu'on fait plutôt usage des fonctions de Green). Nous dédions une part significative de notre travail à la comparaison entre les approches de synthèse et d'analyse. Nous défendons l'idée qu'en dépit de leur équivalence formelle, leurs propriétés computationnelles sont très différentes. En effet, en raison de la parcimonie héritée par la version discrétisée de l'EDP (incarnée par l'opérateur d'analyse), l'approche coparcimonieuse passe bien plus favorablement à l'échelle que le problème équivalent régularisé par parcimonie à la synthèse. Nos constatations sont illustrées dans le cadre de deux applications : la localisation de sources acoustiques, et la localisation de sources de crises épileptiques à partir de signaux électro-encéphalographiques. Dans les deux cas, nous vérifions que l'approche coparcimonieuse démontre de meilleures capacités de passage à l'échelle, au point qu'elle permet même une interpolation complète du champ de pression dans le temps et en trois dimensions. De plus, dans le cas des sources acoustiques, l'optimisation fondée sur le modèle d'analyse \emph{bénéficie} d'une augmentation du nombre de données observées, ce qui débouche sur une accélération du temps de traitement, plus rapide que l'approche de synthèse dans des proportions de plusieurs ordres de grandeur. Nos simulations numériques montrent que les méthodes développées pour les deux applications sont compétitives face à des algorithmes de localisation constituant l'état de l'art. Pour finir, nous présentons deux méthodes fondées sur la parcimonie à l'analyse pour l'estimation aveugle de la célérité du son et de l'impédance acoustique, simultanément à l'interpolation du champ sonore. Ceci constitue une étape importante en direction de la mise en œuvre de nos méthodes en en situation réelle<br>Inverse problems related to physical processes are of great importance in practically every field related to signal processing, such as tomography, acoustics, wireless communications, medical and radar imaging, to name only a few. At the same time, many of these problems are quite challenging due to their ill-posed nature. On the other hand, signals originating from physical phenomena are often governed by laws expressible through linear Partial Differential Equations (PDE), or equivalently, integral equations and the associated Green’s functions. In addition, these phenomena are usually induced by sparse singularities, appearing as sources or sinks of a vector field. In this thesis we primarily investigate the coupling of such physical laws with a prior assumption on the sparse origin of a physical process. This gives rise to a “dual” regularization concept, formulated either as sparse analysis (cosparse), yielded by a PDE representation, or equivalent sparse synthesis regularization, if the Green’s functions are used instead. We devote a significant part of the thesis to the comparison of these two approaches. We argue that, despite nominal equivalence, their computational properties are very different. Indeed, due to the inherited sparsity of the discretized PDE (embodied in the analysis operator), the analysis approach scales much more favorably than the equivalent problem regularized by the synthesis approach. Our findings are demonstrated on two applications: acoustic source localization and epileptic source localization in electroencephalography. In both cases, we verify that cosparse approach exhibits superior scalability, even allowing for full (time domain) wavefield interpolation in three spatial dimensions. Moreover, in the acoustic setting, the analysis-based optimization benefits from the increased amount of observation data, resulting in a speedup in processing time that is orders of magnitude faster than the synthesis approach. Numerical simulations show that the developed methods in both applications are competitive to state-of-the-art localization algorithms in their corresponding areas. Finally, we present two sparse analysis methods for blind estimation of the speed of sound and acoustic impedance, simultaneously with wavefield interpolation. This is an important step toward practical implementation, where most physical parameters are unknown beforehand. The versatility of the approach is demonstrated on the “hearing behind walls” scenario, in which the traditional localization methods necessarily fail. Additionally, by means of a novel algorithmic framework, we challenge the audio declipping problemregularized by sparsity or cosparsity. Our method is highly competitive against stateof-the-art, and, in the cosparse setting, allows for an efficient (even real-time) implementation
APA, Harvard, Vancouver, ISO, and other styles
4

Sverin, Tomas. "Open-ended problems in physics : Upper secondary technical program students’ ways of approaching outdoor physics problems." Thesis, Umeå universitet, Institutionen för naturvetenskapernas och matematikens didaktik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-52486.

Full text
Abstract:
This study reports on technical program students’ approaches to solving open-ended problems during an introductory physics course in a Swedish upper secondary school. The study used case study methodology to investigate students’ activities in outdoor context. The findings come from observations and audio recordings of students solving three different open-ended problems. The results showed that the students had difficulties to formulate ‘solvable’ problems and to perform necessary ‘at home’ preparations to be able to solve the problems. Furthermore, students preferred to use a single solution method even though different solution methods were possible. This behavior can be attributed to their previous experience of solving practical problems in physics education. The result also indicated need of different levels of guidance to help the students in their problem solving process. A tentative conclusion can be made that open-ended problems have an educational potential for developing students’ understanding of scientific inquiry and problem solving strategies in the process of performing practical outdoor activities.
APA, Harvard, Vancouver, ISO, and other styles
5

Dou, Lixin. "Procedures for basic inverse problems: Black body radiation problem and phonon density of states problem." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7544.

Full text
Abstract:
Two numerical procedures, the regularization method and the maximum entropy method, have been investigated and developed to solve some basic inverse problems in theoretical physics. Both of them are applied to the inverse black body radiation problem and the inverse phonon density of states problem. The inverse black body radiation problem is concerned with the determination of the area temperature distribution of a black body source from spectral measurements of its radiation. The phonon density of states problem is defined to be the determination of the phonon density of states function from the measured lattice specific heat function at constant volume. Those problems are ill-posed and can be expressed as a Fredholm integral equation of the first kind. It appears that both the regularization method and the maximum entropy method are successful in solving the two ill-posed problems. Generally the two procedures can be applied to any inverse problem which belongs to the class of the Fredholm integral equation of the first kind.
APA, Harvard, Vancouver, ISO, and other styles
6

Zdeborová, Lenka. "Statistical physics of hard optimization problems." Paris 11, 2008. http://www.theses.fr/2008PA112080.

Full text
Abstract:
L'optimisation est un concept fondamental dans beaucoup de domaines scientifiques comme l'informatique, la théorie de l'information, les sciences de l'ingénieur et la physique statistique, ainsi que pour la biologie et les sciences sociales. Un problème d'optimisation met typiquement en jeu un nombre important de variables et une fonction de coût qui dépend de ces variables. La classe des problèmes NP-complets est particulièrement difficile, et il est communément admis que, dans le pire des cas, un nombre d'opérations exponentiel dans la taille du problème est nécessaire pour minimiser la fonction de coût. Cependant, même ces problèmes peuveut être faciles à résoudre en pratique. La question principale considérée dans cette thèse est comment reconnaître si un problème de satisfaction de contraintes NP-complet est "typiquement" difficile et quelles sont les raisons pour cela ? Nous suivons une approche inspirée par la physique statistique des systèmes désordonnés, en particulier la méthode de la cavité développée originalement pour les systèmes vitreux. Nous décrivons les propriétés de l'espace des solutions dans deux des problèmes de satisfaction les plus étudiés : la satisfiabilité et le coloriage aléatoire. Nous suggérons une relation entre l'existence de variables dites "gelées" et la difficulté algorithmique d'un problème donné. Nous introduisons aussi une nouvelle classe de problèmes, que nous appelons "problèmes verrouillés", qui présentent l'avantage d'être à la fois facilement résoluble analytiquement, du point de vue du comportement moyen, mais également extrêmement difficiles du point de vue de la recherche de solutions dans un cas donné<br>Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability
APA, Harvard, Vancouver, ISO, and other styles
7

Sanzeni, A. "THEORETICAL PHYSICS MODELING OF NEUROLOGICAL PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/390620.

Full text
Abstract:
In this thesis we approach different problems in neurobiology using methods from theoretical physics. The first topic that we studied is the mechanoelectrical transduction at the basis of touch sensation, i.e. the process by which a mechanical signal conveyed during touch is transformed into an electric signal. We investigate how the neural response is generated in the C. elegans and propose a channel gating mechanism to explain the activation of touch receptor neurons by mechanical stimuli. The second part of the thesis is related to our ability of orient ourself and navigate in space. The neural system underlying this ability has been extensively characterized in rats, where the activity of different types of neurons has been found to be correlated with the spatial position of the animal. Grid cells in the rat entorhinal cortex are part of this “neural map” of space; they form regular triangular lattices whose geometrical properties have a modular distribution among the population of neurons. We show that some of the features observed in the system may be explained by assuming that grid cells provide an efficient representation of space. We predict a scaling law connecting the number of neurons within a module and the spatial period of the associated grids. The last problem discussed in this thesis concerns the neurodegenerative Parkinson’s disease. Limb tremor caused by the disease is currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. We develop a theory to describe the onset of anomalous oscillations in the neural activity that are at the origin of the characteristic tremor. We propose a new feedback-controlled stimulation procedure and show that it could outperform the standard protocol.
APA, Harvard, Vancouver, ISO, and other styles
8

Rawal, Sonal. "Application of statistical physics to social problems." Thesis, Brunel University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Johnston, John C. "Bayesian analysis of inverse problems in physics." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muddle, Richard Louden. "Parallel block preconditioning for multi-physics problems." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/parallel-block-preconditioning-for-multiphysics-problems(2efc63e4-f426-4be9-b48a-4016365e08b8).html.

Full text
Abstract:
In this thesis we study efficient parallel iterative solution algorithms for multi-physics problems. In particular, we consider fluid structure interaction (FSI) problems, a type of multi-physics problem in which a fluid and a deformable solid interact. All computations were performed in Oomph-Lib, a finite element library for the simulation of multi-physics problems. In Oomph-Lib, the constituent problems in a multi-physics problem are coupled monolithically, and the resulting system of non-linear equations solved with Newton's method. This requires the solution of sequences of large, sparse linear systems, for which optimal solvers are essential. The linear systems arising from the monolithic discretisation of multi-physics problems are natural candidates for solution with block-preconditioned Krylov subspace methods.We developed a generic framework for the implementation of block preconditioners within Oomph-Lib. Furthermore the framework is parallelised to facilitate the efficient solution of very large problems. This framework enables the reuse of all of Oomph-Lib's existing linear algebra infrastructure and preconditioners (including block preconditioners). We will demonstrate that a wide range of block preconditioners can be seamlessly implemented in this framework, leading to optimal iterative solvers with good parallel scaling.We concentrate on the development of an effective preconditioner for a FSI problem formulated in an arbitrary Lagrangian Eulerian (ALE) framework with pseudo-solid node updates (for the deforming fluid mesh). We begin by considering the pseudo-solid subsidiary problem; the deformation of a solid governed by equations of large displacement elasticity, subject to a prescribed boundary displacement imposed with Lagrange multiplier. We present a robust, optimal, augmented-Lagrangian type preconditioner for the resulting saddle-point linear system and prove analytically tight bounds for the spectrum of the preconditioned operator with respect to the discrete problem size.This pseudo-solid preconditioner is incorporated into a block preconditioner for the full FSI problem. One key feature of the FSI preconditioner is that existing optimal single physics preconditioners (such as the well known Navier-Stokes Least Squares Commutator preconditioner) can be employed to approximately solve the linear systems associated with the constituent sub-problems. We evaluate its performance on selected 2D and 3D problems. The preconditioner is optimal for most problems considered. In cases when sub-optimality is detected, we explain the reasons for such behavior and suggest potential improvements.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Physics problems"

1

Gardiner, E. D. Problems in physics. 3rd ed. McGraw-Hill, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cerullo, G., S. Longhi, M. Nisoli, S. Stagira, and O. Svelto. Problems in Laser Physics. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1373-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wolkenstein, V. S. Problems in general physics. Mir, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

W, Zitzewitz Paul, and Glencoe/McGraw-Hill, eds. Physics: Principles and problems. McGraw Hill/Glencoe, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steeb, W. H. Problems in theoretical physics. B.I.-Wissenschaftsverlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silvestri, Sandro De. Problems in laser physics. Plenum Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

W, Zitzewitz Paul, and Glencoe/McGraw-Hill, eds. Physics: Principles and problems. McGraw Hill/Glencoe, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brian, Williams. Problems in physics: Mechanics. Omega Scientific, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

W, Zitzewitz Paul, and Glencoe/McGraw-Hill, eds. Physics: Principles and problems. Glencoe/McGraw-Hill, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kozel, S. M. Collected problems in physics. MIR Publishers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Physics problems"

1

Scherer, Philipp O. J. "Eigenvalue Problems." In Computational Physics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13990-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pinterić, Marko. "Problems." In Problems in Building Physics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47668-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gedde, Ulf W. "Thermodynamics Problems." In SpringerBriefs in Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38285-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jauslin, Ian. "Open Problems." In SpringerBriefs in Physics. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-81393-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salasnich, Luca, and Francesco Lorenzi. "Solvable Problems." In UNITEXT for Physics. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-67671-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pikulin, Victor P., and Stanislav I. Pohozaev. "Elliptic problems." In Equations in Mathematical Physics. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8285-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pikulin, Victor P., and Stanislav I. Pohozaev. "Hyperbolic problems." In Equations in Mathematical Physics. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8285-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pikulin, Victor P., and Stanislav I. Pohozaev. "Parabolic problems." In Equations in Mathematical Physics. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8285-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

’t Hooft, Gerard. "More Problems." In Fundamental Theories of Physics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41285-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scherer, Philipp O. J. "Eigenvalue Problems." In Graduate Texts in Physics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Physics problems"

1

Kryuchko, N., and N. Potokina. "IMPLEMENTATION OF A VIRTUAL PHYSICAL EXPERIMENT IN A PHYSICS LESSON." In Modern problems of physics education. Baskir State University, 2021. http://dx.doi.org/10.33184/mppe-2021-11-10.56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

POSTOLACHI, Igor, Leonid GUȚULEAC, and Valentina POSTOLACHI. "Limit and extremum problems in physics." In Ştiință și educație: noi abordări și perspective. "Ion Creanga" State Pedagogical University, 2023. http://dx.doi.org/10.46727/c.v3.24-25-03-2023.p376-381.

Full text
Abstract:
This article is about the problem-solving activity in practical lessons in the general physics course. Boundary and extreme problems were chosen. In such problems, it is proposed to compare the values of physical quantities, to arrange them in order of increase, to find out the limits of variation of the values of a physical quantity, to establish the optimal conditions for carrying out certain processes. Some problems of this kind are accompanied by diagrams or graphs. From diagrams and graphs, you can make the necessary conclusions for solving problems, you can find out the values of some physical quantities. Such problems develop the skills of building the necessary schemes, working with graphs and reading the necessary information from them. And the problem-solving activity is absolutely necessary for the formation of a good physics teacher.
APA, Harvard, Vancouver, ISO, and other styles
3

Teodorescu, Raluca, Cornelius Bennhold, Gerald Feldman, Charles Henderson, Mel Sabella, and Leon Hsu. "Enhancing Cognitive Development through Physics Problem Solving: A Taxonomy of Introductory Physics Problems." In 2008 PHYSICS EDUCATION RESEARCH CONFERENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3021255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malykhin, V. "THE CONSTRUCTION OF PHYSICAL QUANTITIES CHARTS IN DESMOS TO PROVIDE VISUALIZATION IN A PHYSICS LESSON." In Modern problems of physics education. Baskir State University, 2021. http://dx.doi.org/10.33184/mppe-2021-11-10.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matveyev, T. "PHYSICS AND SPORTS TOURISM." In Modern problems of physics education. Baskir State University, 2021. http://dx.doi.org/10.33184/mppe-2021-11-10.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Svirskaya, L. "PHYSICS OF ELEMENTARY PARTICLES IN THE SYSTEM OF TRAINING A PHYSICS TEACHER." In Modern problems of physics education. Baskir State University, 2021. http://dx.doi.org/10.33184/mppe-2021-11-10.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Problems & Solutions." In 15th Asian Physics Olympiad. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689120_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orlik, Ye. "PRACTICE-ORIENTED PROBLEMS WITH PHYSICS CONTENT IN THE COURSE OF MATHEMATICS OF THE COLLEGE OF PHYSICAL CULTURE." In Modern problems of physics education. Baskir State University, 2021. http://dx.doi.org/10.33184/mppe-2021-11-10.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Govaerts, Jan, M. Norbert Hounkonnou, and William A. Lester. "Contemporary Problems in Mathematical Physics." In Proceedings of the First International Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Greiner, Walter. "OUTSTANDING PROBLEMS OF NUCLEAR PHYSICS." In International Symposium on Exotic Nuclei EXON-2014. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699464_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Physics problems"

1

Mayes, B. W., E. V. Hungerford, and L. S. Pinsky. Selected problems in experimental intermediate energy physics. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/5008236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koushiappas, Savvas M. Fundamental problems in astroparticle physics and cosmology. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1600111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kroll, N. M. Theoretical problems in accelerator physics. Progress report. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10172412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mynick, H. E. Toward the automated analysis of plasma physics problems. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/6313665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mayes, B., E. Hungerford, and L. Pinsky. Selected problems in experimental intermediate energy physics. [Dept. of Physics, Univ. of Houston]. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6941843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kippen, Karen Elizabeth. Experimental Physical Sciences, Advancing physics and materials science for problems of national importance. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1212614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olsen, D. (Advanced accelerator physics featuring the problems of small rings). Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5481089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mayes, B. W., E. V. Hungerford, and L. S. Pinsky. Selected problems in experimental intermediate energy physics. Progress report. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10123003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luk, Franklin T. Solving Large and Dense Eigenvalue Problems that Arise in Physics. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada310880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kookjin, and Eric Parish. Parameterized Neural Ordinary Differential Equations: Applications to Computational Physics Problems. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!