Academic literature on the topic 'Physique Théorie quantique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physique Théorie quantique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physique Théorie quantique"
Haroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 114 (July 1, 2015): 147–69. http://dx.doi.org/10.4000/annuaire-cdf.11887.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 115 (November 1, 2016): 141–56. http://dx.doi.org/10.4000/annuaire-cdf.12511.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 111 (April 1, 2012): 117–28. http://dx.doi.org/10.4000/annuaire-cdf.1325.
Full textRaimond, Jean-Michel. "Physique quantique." L’annuaire du Collège de France, no. 116 (June 15, 2018): 668–70. http://dx.doi.org/10.4000/annuaire-cdf.13548.
Full textRaimond, Jean-Michel. "Physique quantique." L’annuaire du Collège de France, no. 117 (September 1, 2019): 656–57. http://dx.doi.org/10.4000/annuaire-cdf.14838.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 109 (March 1, 2010): 125–29. http://dx.doi.org/10.4000/annuaire-cdf.222.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 113 (April 1, 2014): 141–61. http://dx.doi.org/10.4000/annuaire-cdf.2305.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 112 (April 1, 2013): 127–33. http://dx.doi.org/10.4000/annuaire-cdf.698.
Full textHaroche, Serge. "Physique quantique." L’annuaire du Collège de France, no. 108 (December 1, 2008): 115–25. http://dx.doi.org/10.4000/annuaire-cdf.76.
Full textRaimond, Jean-Michel. "Physique quantique." L’annuaire du Collège de France, no. 118 (December 30, 2020): 678–80. http://dx.doi.org/10.4000/annuaire-cdf.16214.
Full textDissertations / Theses on the topic "Physique Théorie quantique"
Uzan, Pierre. "Conscience et physique quantique." Thesis, Paris 4, 2010. http://www.theses.fr/2010PA040153.
Full textThis work aims to assess the contribution of quantum physics to the understanding of the phenomenon ofconsciousness. The "classical" models of consciousness cannat deal with two important questions: (a) thesynchronisation of distant parts of the brain which seems necessary to the construction of conscious percepts;(b) the question of the explanatory gap that exists between subjective experience, which is a private feeling, andthe description of its neurophysiological correlates in the language of science, at the third persan. The quantumalternatives of current models of consciousness are systematically exposed. Vitiello's and Freeman's "dissipativemadel of the brain" seem to corroborate experimental data and could thus contribute to solve question (a). Thismadel appeals to a fundamental property of quantum field theory according to which a spontaneous symmetrybreaking in a physical system (as it happens, the breaking of the rotational symmetry of dipolar molecules of thebrain) gives rise to a collective dynamics for this system. The models, relevant to the neutra! monism conception,that have been developed by Bohm and Hiley and, more recently, by Atmanspacher and by Primas use quantumtheory for its expressive power (concepts of complementarity and entanglement) to build a unifyingrepresentation of the phenomenon of consciousness. They lead to the dissolution of the question (b) of theexplanatory gap. ln the end, we suggest to extend this mode of representation and to apply it, more generally, tothe psychosomatic domain
CAJEAT, ERIC. "Medecine ayur-vedique et physique quantique." Lille 2, 1993. http://www.theses.fr/1993LIL2M014.
Full textArmagnat, Pacôme. "Physique quantique et électrostatique auto-cohérentes." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY024/document.
Full textElectrostatic energy is very often the largest energy scale in quantum nanoelectronic systems. Yet, in theoretical work or numerical simulations, the electrostatic landscape is equally often taken for granted as an external potential, which may result in a wrong physical picture. Developing numerical tools that can properly handle the electrostatics and its interplay with quantum mechanics is of utter importance for the understanding of quantum devices in e.g. semi-conducting or graphene like materials.This thesis is devoted to the self-consistent quantum-electrostatic problem. This problem (also known as Poisson-Schr"odinger) is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. In this thesis, we present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. Thus, it provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.We illustrate our approach with a calculation of the differential conductance of a quantum point contact geometry.We also revisit the problem of the compressible and incompressible stripes in the integer quantum Hall regime. Our calculations reveal the existence of a new ”hybrid” phase at intermediate magnetic field that separate the low field phase from the high field stripes.In a second part we construct a theory that describes the propagation of the collective excitations (plasmons) that can be excited in two-dimensional electron gases. Our theory, which reduces to Luttinger liquid in one dimension can be directly connected to the microscopic quantum-electrostatic problem enabling us to make predictions free of any free parameters. We discuss recent experiments made in Grenoble that aim at demonstrating electronic flying quantum bits. We find that our theory agrees quantitatively with the experimental data
Seixas, João. "Monopoles magnétiques de la physique classique à la physique quantique /." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb376012396.
Full textSeixas, João. "Monopoles magnétiques : de la physique classique à la physique quantique." Lyon 1, 1986. http://www.theses.fr/1986LYO19050.
Full textBecker, Cyrille. "Lasers à cascade quantique : étude physique et ingénierie de la structure quantique." Palaiseau, Ecole polytechnique, 2002. http://www.theses.fr/2002EPXX0040.
Full textNagle, Julien. "Etude physique du laser à puits quantique." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37608314t.
Full textNagle, Julien. "Etude physique du laser a puits quantique." Paris 6, 1987. http://www.theses.fr/1987PA066549.
Full textNikseresht, Iraj. "La physique quantique au regard de la physique classique et de la physique dans l'Antiquité." Paris 1, 2003. http://www.theses.fr/2003PA010520.
Full textRabeie, Ardeshir. "Physique quantique des systèmes élémentaires dans de Sitter." Université de Marne-la-Vallée, 2005. http://www.theses.fr/2005MARN0243.
Full textThe object of this work is the quantization, using coherent states, of classical observables for a massive particle which moves on the de Sitter space. We obtain this result using a new method which we call method of the "Spherical Complex Harmonics". We build the phase space for the massive particles as an adjoint orbit of the universal covering of the de Sitter group for two and four dimensions (SU(1, 1) and Sp(2, 2)). This space is isomorphic with T*(Sd) and thus also with the complex sphere SdC. We build an invariant measure on this space and, using the analytical continuation of the spherical harmonics we obtain coherent states indexed by the points of SdC and thus, of the phase space of the massive particles on the de Sitter space. Lastly, these coherent states yield a quantization, i. E. An effective computation of the quantum observable from the classical ones
Books on the topic "Physique Théorie quantique"
Michel, Crozon, Sacquin Yves, and Darrigol Oliver, eds. Un sie cle de quanta: [sixie mes rencontres "Physique et interrogations fondamentales]. Les Ulis: EDP sciences, 2003.
Find full textOrtoli, Sven. Le cantique des quantiques: Le monde existe-t-il ? Paris: E d. La de couverte, 1987.
Find full textBellac, Michel Le. Des phe nome nes critiques aux champs de jauge. Les Ulis: EDP sciences, 2002.
Find full textBoudenot, Jean-Claude. Comment Einstein a change le monde. Les Ulis: EDP sciences, 2005.
Find full textn, Trong Anh Nguye. Orbitales frontie res: Manuel pratique. 2nd ed. Les Ulis [France]: EDP Sciences, 2007.
Find full textBellac, Michel Le. Physique quantique. 2nd ed. Les Ulis, France: EDP Sciences, 2007.
Find full textAuteur, Mahan Gerald D., and Nadgorny Boris E. Auteur, eds. Guide to physics problems: Thermodynamics, statistical physics and quantum mechanics. New York: Kluwer, 2004.
Find full textBook chapters on the topic "Physique Théorie quantique"
Haroche, Serge. "Physique quantique." In Physique quantique. Collège de France, 2004. http://dx.doi.org/10.4000/books.cdf.527.
Full text"18 Systèmes quantiques ouverts." In Physique quantique, 771–808. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1041-3-008.
Full text"Préface de la troisième édition." In Physique quantique, xxvii—xxviii. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1040-6-003.
Full text"Annexes." In Physique quantique, 471–84. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1040-6-015.
Full text"13 Théorie de la diffusion." In Physique quantique, 547–604. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1041-3-003.
Full text"Références." In Physique quantique, 1003–12. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1041-3-011.
Full text"7 Symétries en physique quantique." In Physique quantique, 211–42. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1040-6-010.
Full text"9 Moment angulaire." In Physique quantique, 295–350. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1040-6-012.
Full text"3 Polarisation : photon et spin 1/2." In Physique quantique, 73–114. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1040-6-006.
Full text"15 Atomes à un électron." In Physique quantique, 651–86. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1041-3-005.
Full text