Journal articles on the topic 'PI3K TARGET'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PI3K TARGET.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Bi-Dar, Alyssa Lucero, Siyoung Ha та Reyhaneh Yarmohammadi. "PI3Kδ as a Novel Therapeutic Target for Aggressive Prostate Cancer". Cancers 17, № 10 (2025): 1610. https://doi.org/10.3390/cancers17101610.
Full textDiacovo, Thomas, Dosh Whye, Evgeni Efimenko та ін. "Therapeutic Utility of PI3Kγ Inhibition in Leukemogenesis and Tumor Cell Survival". Blood 120, № 21 (2012): 1492. http://dx.doi.org/10.1182/blood.v120.21.1492.1492.
Full textBorsari, Chiara, and Matthias P. Wymann. "Targeting Phosphoinositide 3-Kinase – Five Decades of Chemical Space Exploration." CHIMIA 75, no. 12 (2021): 1037. http://dx.doi.org/10.2533/chimia.2021.1037.
Full textVarkaris, Andreas, Ferran Fece de la Cruz, Elizabeth Martin, et al. "Abstract GS03-10: Allosteric PI3K-alpha inhibition overcomes on-target resistance to orthosteric inhibitors mediated by secondary PIK3CA mutations." Cancer Research 84, no. 9_Supplement (2024): GS03–10—GS03–10. http://dx.doi.org/10.1158/1538-7445.sabcs23-gs03-10.
Full textWen, Hanning, Shuai Mao, Mahamadou Djibo та ін. "Abstract 3001: Highly selective and oral bioavailable PI3Kγ inhibitor for cancer immunotherapy by targeting myeloid-derived suppressor cells in tumor". Cancer Research 85, № 8_Supplement_1 (2025): 3001. https://doi.org/10.1158/1538-7445.am2025-3001.
Full textBarberis, Laura, та Emilio Hirsch. "Targeting phosphoinositide 3-kinase γ to fight inflammation and more". Thrombosis and Haemostasis 99, № 02 (2008): 279–85. http://dx.doi.org/10.1160/th07-10-0632.
Full textMiller, Michelle, Philip Thompson, and Sandra Gabelli. "Structural Determinants of Isoform Selectivity in PI3K Inhibitors." Biomolecules 9, no. 3 (2019): 82. http://dx.doi.org/10.3390/biom9030082.
Full textLaurent, Pierre-Alexandre, Cédric Garcia, Marie-Pierre Gratacap та ін. "The class I phosphoinositide 3-kinases α and β control antiphospholipid antibodies-induced platelet activation". Thrombosis and Haemostasis 115, № 06 (2016): 1138–46. http://dx.doi.org/10.1160/th15-08-0661.
Full textMercurio, Laura, Martina Morelli, Claudia Scarponi та ін. "PI3Kδ Sustains Keratinocyte Hyperproliferation and Epithelial Inflammation: Implications for a Topically Druggable Target in Psoriasis". Cells 10, № 10 (2021): 2636. http://dx.doi.org/10.3390/cells10102636.
Full textKuracha, Murali R., Venkatesh Govindarajan, Brian W. Loggie, Martin Tobi, and Benita L. McVicker. "Pictilisib-Induced Resistance Is Mediated through FOXO1-Dependent Activation of Receptor Tyrosine Kinases in Mucinous Colorectal Adenocarcinoma Cells." International Journal of Molecular Sciences 24, no. 15 (2023): 12331. http://dx.doi.org/10.3390/ijms241512331.
Full textPerez-Stable, Carlos, Alicia de las Pozas, Medhi Wangpaichitr, et al. "Growth Hormone-Releasing Hormone (GHRH) Antagonist Peptides Combined with PI3K Isoform Inhibitors Enhance Cell Death in Prostate Cancer." Cancers 17, no. 10 (2025): 1643. https://doi.org/10.3390/cancers17101643.
Full textMaffei, Angelo, Giuseppe Lembo, and Daniela Carnevale. "PI3Kinases in Diabetes Mellitus and Its Related Complications." International Journal of Molecular Sciences 19, no. 12 (2018): 4098. http://dx.doi.org/10.3390/ijms19124098.
Full textXenou, Lydia, та Evangelia A. Papakonstanti. "p110δ PI3K as a therapeutic target of solid tumours". Clinical Science 134, № 12 (2020): 1377–97. http://dx.doi.org/10.1042/cs20190772.
Full textRaguž, Luka, Theodora A. Constantin, Lukas Bissegger та ін. "Abstract 1954: Development of highly potent, covalent, and selective inhibitors to target PI3Kα in cancer". Cancer Research 84, № 6_Supplement (2024): 1954. http://dx.doi.org/10.1158/1538-7445.am2024-1954.
Full textML, Choudhary. "A Review on Cancer, Cause of Cancer and Treatment: Role of PIK3 Pathway on Cancer." Bioequivalence & Bioavailability International Journal 7, no. 2 (2023): 1–17. http://dx.doi.org/10.23880/beba-16000208.
Full textChen, Shiyi, Wenkang Huang, Xiaoyu Li, Lijuan Gao, and Yiping Ye. "Identifying Active Compounds and Mechanisms of Citrus changshan-Huyou Y. B. Chang against URTIs-Associated Inflammation by Network Pharmacology in Combination with Molecular Docking." Evidence-Based Complementary and Alternative Medicine 2022 (July 13, 2022): 1–10. http://dx.doi.org/10.1155/2022/2156157.
Full textHutter, Grit, Yvonne Zimmermann, Anna-Katharina Zoellner, et al. "Combination of PI3K and PDPK1 Inhibitors Is Highly Effective in Mantle Cell Lymphoma." Blood 124, no. 21 (2014): 3123. http://dx.doi.org/10.1182/blood.v124.21.3123.3123.
Full textKücükdisli, Murat, Hassen Bel-Abed, Davide Cirillo, et al. "Structural Basis for Highly Selective Class II Alpha Phosphoinositide-3-Kinase Inhibition." Journal of Medicinal Chemistry 66, no. 20 (2023): 14278–302. https://doi.org/10.5281/zenodo.10683812.
Full textCourtney, Kevin D., Ryan B. Corcoran, and Jeffrey A. Engelman. "The PI3K Pathway As Drug Target in Human Cancer." Journal of Clinical Oncology 28, no. 6 (2010): 1075–83. http://dx.doi.org/10.1200/jco.2009.25.3641.
Full textBrosinsky, Paulin, Julia Bornbaum, Björn Warga та ін. "PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ1-Stimulated Cardiomyocytes". Biology 10, № 7 (2021): 670. http://dx.doi.org/10.3390/biology10070670.
Full textMujumdar, Vaidehi, Ritchie Delara, Hailey L. Dryden, et al. "In silico design of novel multitarget small molecule inhibitors to treat PTEN-mutant endometrial carcinoma." Journal of Clinical Oncology 42, no. 16_suppl (2024): e15119-e15119. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e15119.
Full textCao, Biyin, Jingyu Zhu, Man Wang, et al. "A Novel PI3K Inhibitor Identified By a High Throughput Virtual Screen Displays Potent Activity Against Multiple Myeloma." Blood 124, no. 21 (2014): 4722. http://dx.doi.org/10.1182/blood.v124.21.4722.4722.
Full textWyatt, Garhett, Rachel Steinmetz, Traci Lyons, and Weston Porter. "Abstract PO5-05-08: LOSS OF SINGLEMINDED 2S RESULTS IN A PI3K SUBUNIT SWITCH WHICH DRIVES THERAPEUTIC RESISTANCE IN ESTROGEN RECEPTOR POSITIVE BREAST CANCER." Cancer Research 84, no. 9_Supplement (2024): PO5–05–08—PO5–05–08. http://dx.doi.org/10.1158/1538-7445.sabcs23-po5-05-08.
Full textBeck, Patrick, Kasen Reed Hutchings, Eileen Xu, et al. "PIK3CB as a potential target to regulate chemosensitivity in glioblastoma." Journal of Clinical Oncology 41, no. 16_suppl (2023): e14051-e14051. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e14051.
Full textMeadows, Sarah, Sorensen Rick, Yahiaoui Anella, et al. "Up-Regulation of the PI3K Signaling Pathway Mediates Resistance to Idelalisib." Blood 126, no. 23 (2015): 3707. http://dx.doi.org/10.1182/blood.v126.23.3707.3707.
Full textMolins, Joaquim Bellmunt, Lillian Werner, Marta Guix, et al. "PI3KCA mutations in advanced urothelial carcinoma: A potential therapeutic target?" Journal of Clinical Oncology 30, no. 15_suppl (2012): 4582. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4582.
Full textGuenther, Andreas, Renate Burger, Wolfram Klapper, Matthias Staudinger, and Martin Gramatzki. "Selective Inhibition Of The PI3K-Alpha Isoform Blocks Myeloma Cell Growth and Survival." Blood 122, no. 21 (2013): 5364. http://dx.doi.org/10.1182/blood.v122.21.5364.5364.
Full textJeong, Jae Seok, Jong Seung Kim, So Ri Kim, and Yong Chul Lee. "Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management." International Journal of Molecular Sciences 20, no. 14 (2019): 3525. http://dx.doi.org/10.3390/ijms20143525.
Full textLobo, Vítor, Ashly Rocha, Tarsila G. Castro, and Maria Alice Carvalho. "Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms." Polymers 15, no. 7 (2023): 1703. http://dx.doi.org/10.3390/polym15071703.
Full textSmith, Stephen F., Shannon E. Collins, and Pascale G. Charest. "Ras, PI3K and mTORC2 – three's a crowd?" Journal of Cell Science 133, no. 19 (2020): jcs234930. http://dx.doi.org/10.1242/jcs.234930.
Full textRathinaswamy, Manoj K., Udit Dalwadi, Kaelin D. Fleming та ін. "Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation". Science Advances 7, № 35 (2021): eabj4282. http://dx.doi.org/10.1126/sciadv.abj4282.
Full textGong, Grace Q., Jackie D. Kendall, James M. J. Dickson та ін. "Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity". Biochemical Journal 474, № 13 (2017): 2261–76. http://dx.doi.org/10.1042/bcj20161098.
Full textBheemanaboina, Rammohan R. Y. "Isoform-Selective PI3K Inhibitors for Various Diseases." Current Topics in Medicinal Chemistry 20, no. 12 (2020): 1074–92. http://dx.doi.org/10.2174/1568026620666200106141717.
Full textUche, Uzodinma U., Ann R. Piccirillo, Shunsuke Kataoka, Stephanie J. Grebinoski, Louise M. D’Cruz, and Lawrence P. Kane. "PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt." Journal of Experimental Medicine 215, no. 12 (2018): 3165–79. http://dx.doi.org/10.1084/jem.20172018.
Full textNarayanankutty, Arunaksharan. "PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence." Current Drug Targets 20, no. 12 (2019): 1217–26. http://dx.doi.org/10.2174/1389450120666190618123846.
Full textGoncalves, Marcus D., and Azeez Farooki. "Management of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia." Integrative Cancer Therapies 21 (January 2022): 153473542110731. http://dx.doi.org/10.1177/15347354211073163.
Full textSmith, Greg C., Wee Kiat Ong, Gordon W. Rewcastle, Jackie D. Kendall, Weiping Han, and Peter R. Shepherd. "Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo." Biochemical Journal 442, no. 1 (2012): 161–69. http://dx.doi.org/10.1042/bj20111913.
Full textKang, Byung Woog, and Ian Chau. "Molecular target: pan-AKT in gastric cancer." ESMO Open 5, no. 5 (2020): e000728. http://dx.doi.org/10.1136/esmoopen-2020-000728.
Full textChen, Yingwei, Bao-Can Wang, and Yongtao Xiao. "PI3K: A potential therapeutic target for cancer." Journal of Cellular Physiology 227, no. 7 (2012): 2818–21. http://dx.doi.org/10.1002/jcp.23038.
Full textSchmitz, Alexa E., Shirsa Udgata, Katherine A. Johnson, and Dustin A. Deming. "The Precision-Guided Use of PI3K Pathway Inhibitors for the Treatment of Solid Malignancies." Biomedicines 13, no. 6 (2025): 1319. https://doi.org/10.3390/biomedicines13061319.
Full textJia, Wen-Qing, Xiao-Yan Feng, Ya-Ya Liu та ін. "Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure". Letters in Drug Design & Discovery 17, № 6 (2020): 772–86. http://dx.doi.org/10.2174/1570180816666190730163431.
Full textGao, Mingming, Chao Qi, Zhentian Li та ін. "Abstract 1956: Discovery of a novel and potent mutant-selective inhibitor of PI3Kα". Cancer Research 84, № 6_Supplement (2024): 1956. http://dx.doi.org/10.1158/1538-7445.am2024-1956.
Full textThillai, Kiruthikah, Debashis Sarker, and Claire Wells. "PAK4 as a potential therapeutic target in pancreatic ductal adenocarcinoma (PDAC)." Journal of Clinical Oncology 35, no. 15_suppl (2017): e23139-e23139. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e23139.
Full textBosch, Ana, Zhiqiang Li, Anna Bergamaschi, et al. "PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer." Science Translational Medicine 7, no. 283 (2015): 283ra51. http://dx.doi.org/10.1126/scitranslmed.aaa4442.
Full textZhang, Xuewei, Masumi Ishibashi, Kazuyuki Kitatani, et al. "Potential of Tyrosine Kinase Receptor TIE-1 as Novel Therapeutic Target in High-PI3K-Expressing Ovarian Cancer." Cancers 12, no. 6 (2020): 1705. http://dx.doi.org/10.3390/cancers12061705.
Full textBlunt, Matthew D., Matthew J. Carter, Marta Larrayoz, et al. "The Dual PI3K/mTOR Inhibitor PF-04691502 Induces Substantial Apoptosis in Chronic Lymphocytic Leukemia Cells in Vitro and Prolongs Survival in the Eµ-TCL1 Mouse Model." Blood 124, no. 21 (2014): 832. http://dx.doi.org/10.1182/blood.v124.21.832.832.
Full textChen, Yu-Chen Enya, Melinda Lea Burgess, Antje Blumenthal, et al. "Activation of Fc Gamma Receptor-Dependent Responses to Therapeutic Antibodies By Nurse like Cells Requires PI3Kdelta." Blood 132, Supplement 1 (2018): 3128. http://dx.doi.org/10.1182/blood-2018-99-109719.
Full textGiulino Roth, Lisa, Herman van Besien, Anna Rodina, et al. "Targeting the Hsp90 Oncoproteome in Burkitt Lymphoma." Blood 126, no. 23 (2015): 592. http://dx.doi.org/10.1182/blood.v126.23.592.592.
Full textLeiphrakpam, Premila, and Chandrakanth Are. "PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment." International Journal of Molecular Sciences 25, no. 6 (2024): 3178. http://dx.doi.org/10.3390/ijms25063178.
Full textRezende, Denise C., Lorena Zaida Pacheco, Luis Arthur F. Pelloso, et al. "PI3K/AKT Pathway as a Potential Therapeutic Target In Myelodysplastic Syndrome." Blood 116, no. 21 (2010): 1871. http://dx.doi.org/10.1182/blood.v116.21.1871.1871.
Full text