Academic literature on the topic 'Picard lattice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Picard lattice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Picard lattice"
Várilly-Alvarado, Anthony, and David Zywina. "Arithmetic E8 Lattices with Maximal Galois Action." LMS Journal of Computation and Mathematics 12 (2009): 144–65. http://dx.doi.org/10.1112/s1461157000001479.
Full textSarti, Alessandra. "Group Actions, Cyclic Coverings and Families of K3-Surfaces." Canadian Mathematical Bulletin 49, no. 4 (2006): 592–608. http://dx.doi.org/10.4153/cmb-2006-055-0.
Full textKondō, Shigeyuki. "Algebraic K3 surfaces with finite automorphism groups." Nagoya Mathematical Journal 116 (December 1989): 1–15. http://dx.doi.org/10.1017/s0027763000001653.
Full textZHAO, TIEHONG. "A minimal volume arithmetic cusped complex hyperbolic orbifold." Mathematical Proceedings of the Cambridge Philosophical Society 150, no. 2 (2010): 313–42. http://dx.doi.org/10.1017/s0305004110000526.
Full textEisele, Florian. "On the geometry of lattices and finiteness of Picard groups." Journal für die reine und angewandte Mathematik (Crelles Journal) 2022, no. 782 (2021): 219–33. http://dx.doi.org/10.1515/crelle-2021-0064.
Full textFisher, Tom. "Explicit moduli spaces for congruences of elliptic curves." Mathematische Zeitschrift 295, no. 3-4 (2019): 1337–54. http://dx.doi.org/10.1007/s00209-019-02392-9.
Full textAprodu, Marian, and Gavril Farkas. "Green’s conjecture for curves on arbitrary K3 surfaces." Compositio Mathematica 147, no. 3 (2011): 839–51. http://dx.doi.org/10.1112/s0010437x10005099.
Full textCamere, Chiara, Grzegorz Kapustka, Michał Kapustka, and Giovanni Mongardi. "Verra Four-Folds, Twisted Sheaves, and the Last Involution." International Mathematics Research Notices 2019, no. 21 (2018): 6661–710. http://dx.doi.org/10.1093/imrn/rnx327.
Full textCATINAS, TEODORA, DIANA OTROCOL, and IOAN A. RUS. "The iterates of positive linear operators with the set of constant functions as the fixed point set." Carpathian Journal of Mathematics 32, no. 2 (2016): 165–72. http://dx.doi.org/10.37193/cjm.2016.02.04.
Full textYakovenko, Sergei. "Bounded decomposition in the Brieskorn lattice and Pfaffian Picard–Fuchs systems for Abelian integrals." Bulletin des Sciences Mathématiques 126, no. 7 (2002): 535–54. http://dx.doi.org/10.1016/s0007-4497(02)01126-0.
Full textDissertations / Theses on the topic "Picard lattice"
Festi, D. "Topics in the arithmetic of Del Pezzo and K3 surfaces." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/411137.
Full textBook chapters on the topic "Picard lattice"
"§2. PICARD GROUP AND COHOMOLOGY." In Commensurabilities among Lattices in PU (1,n). (AM-132). Princeton University Press, 1993. http://dx.doi.org/10.1515/9781400882519-003.
Full textConference papers on the topic "Picard lattice"
Liu, Zhenhai, Feipeng Qi, Yi Zhou, et al. "The Study of Coupled Fuel Performance Analysis and Neutronics With COMSOL and RMC." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92046.
Full text