Academic literature on the topic 'Picard-Lindelöf theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Picard-Lindelöf theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Picard-Lindelöf theorem"

1

Siegmund, Stefan, Christine Nowak, and Josef Diblik. "A generalized Picard-Lindelöf theorem." Electronic Journal of Qualitative Theory of Differential Equations, no. 28 (2016): 1–8. http://dx.doi.org/10.14232/ejqtde.2016.1.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schlage-Puchta, Jan-Christoph. "Optimal version of the Picard–Lindelöf theorem." Electronic Journal of Qualitative Theory of Differential Equations, no. 39 (2021): 1–8. http://dx.doi.org/10.14232/ejqtde.2021.1.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Passias, Georgios, and Sven-Ake Wegner. "On a Counterexample in Connection with the Picard-Lindelöf Theorem." College Mathematics Journal 52, no. 3 (May 21, 2021): 221–23. http://dx.doi.org/10.1080/07468342.2021.1909978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marasi, H. R., A. Soltani Joujehi, and H. Aydi. "An Extension of the Picard Theorem to Fractional Differential Equations with a Caputo-Fabrizio Derivative." Journal of Function Spaces 2021 (March 15, 2021): 1–6. http://dx.doi.org/10.1155/2021/6624861.

Full text
Abstract:
In this paper, we consider fractional differential equations with the new fractional derivative involving a nonsingular kernel, namely, the Caputo-Fabrizio fractional derivative. Using a successive approximation method, we prove an extension of the Picard-Lindelöf existence and uniqueness theorem for fractional differential equations with this derivative, which gives a set of conditions, under which a fractional initial value problem has a unique solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Koyama, S. "Prime Geodesic Theorem for the Picard manifold under the mean-Lindelöf hypothesis." Forum Mathematicum 13, no. 6 (January 12, 2001). http://dx.doi.org/10.1515/form.2001.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Locher, F., and M. R. Skrzipek. "Brouwer via Picard-Lindelöf: A Short Proof of the Brouwer Fixed Point Theorem." Analysis 23, no. 4 (January 2003). http://dx.doi.org/10.1524/anly.2003.23.4.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aliyu, Aliyu Isa, Ali Saleh Alshomrani, Yongjin Li, Mustafa Inc, and Dumitru Baleanu. "Existence theory and numerical simulation of HIV-I cure model with new fractional derivative possessing a non-singular kernel." Advances in Difference Equations 2019, no. 1 (September 23, 2019). http://dx.doi.org/10.1186/s13662-019-2336-5.

Full text
Abstract:
Abstract In this research work, a mathematical model related to HIV-I cure infection therapy consisting of three populations is investigated from the fractional calculus viewpoint. Fractional version of the model under consideration has been proposed. The proposed model is examined by using the Atangana–Baleanu fractional operator in the Caputo sense (ABC). The theory of Picard–Lindelöf has been employed to prove existence and uniqueness of the special solutions of the proposed fractional-order model. Further, it is also shown that the non-negative hyper-plane $\mathbb{R}_{+}^{3}$ R + 3 is a positively invariant region for the underlying model. Finally, to analyze the results, some numerical simulations are carried out via a numerical technique recently devised for finding approximate solutions of fractional-order dynamical systems. Upon comparison of the numerical simulations, it has been demonstrated that the proposed fractional-order model is more accurate than its classical version. All the necessary computations have been performed using MATLAB R2018a with double precision arithmetic.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Picard-Lindelöf theorem"

1

Bourdin, Loïc. "Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3009/document.

Full text
Abstract:
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe
This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Picard-Lindelöf theorem"

1

Karlson, Kyle N., and Michael J. Leamy. "Three-Dimensional Equilibria and Stability of Nonlinear Curved Beams Using Intrinsic Equations and Shooting." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70428.

Full text
Abstract:
This article describes a shooting method that provides numerical solutions to static equilibrium equations for intrinsically curved beams in three-dimensions. Notably, the method avoids iteration for cantilever beams subjected to distributed or point follower loads. This is due to the governing equations being given in first-order form such that the specification of a single boundary condition on the forced end results in automatic satisfaction of the fixed boundary condition. Also documented is a general procedure for finding all solutions to static beam problems with conservative loading. This is particularly useful in beam buckling problems where multiple stable and unstable solutions exist. The procedure for finding all solutions is built around the Picard-Lindelöf theorem on the uniqueness and existence of solutions to initial value problems. Using the presented approach, three-dimensional equilibrium solutions are generated for many loading cases and boundary conditions, including a three-dimensional helical beam, and are compared to similar solutions available in the literature. The stability of the generated solutions is assessed using a dynamic finite element code based on the same intrinsic beam equations. Due to the absent need for iteration, the presented approach may find application in model-based control for practical problems such as the control of equipment utilized in endoscopic surgeries and the control of spacecraft with robotic arms and long cables.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography