Academic literature on the topic 'Pickering emulsion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pickering emulsion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pickering emulsion"

1

Wang, Guozhen, Jin Li, Xiaoqin Yan, Yan Meng, Yanpeng Zhang, Xianhui Chang, Jie Cai, Shilin Liu, and Wenping Ding. "Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran." Polymers 16, no. 7 (March 22, 2024): 868. http://dx.doi.org/10.3390/polym16070868.

Full text
Abstract:
To investigate the optimal delivery system of quercetin, in this paper, cellulose nanocrystals (CNCs) extracted from rice bran were used to stabilize the Pickering emulsion and Pickering emulsion gels (PEGs) with quercetin. To compare the emulsion properties, stability, antioxidation activity, encapsulation rate, and bioaccessibility of the quercetin, four emulsions of CNC Pickering emulsion (C), CNC Pickering emulsion with quercetin (CQ), CNC Pickering gel emulsion (CG), and CNC Pickering gel emulsions with quercetin (CQG) were prepared. All four emulsions exhibited elastic gel network structure and good stability. The quercetin significantly reduced the particle size, increased the stability, and improved the antioxidant capacity of CQ and CQG. Compared to C and CG, the ABTS+ radical scavenging capacities of CQ and CQG were respectively enhanced by 46.92% and 3.59%. In addition, CQG had a higher encapsulation rate at 94.57% and higher bioaccessibility (16.17) compared to CQ. This study not only indicated that CNC from rice bran could be exploited as an excellent stabilization particle for Pickering emulsions, but also provided a highly stable and bioaccessible delivery system for water-insoluble functional active factors.
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Lipei, Qianli Ma, Kaili Liao, Junnan An, Jinmei Bai, and Yanfeng He. "Application of Pickering emulsion in oil drilling and production." Nanotechnology Reviews 11, no. 1 (December 3, 2021): 26–39. http://dx.doi.org/10.1515/ntrev-2022-0003.

Full text
Abstract:
Abstract When surfactant is used as emulsifier, the stability of emulsion is often greatly reduced with the influence of reservoir conditions (temperature, pressure, salinity, etc.), which shortens the validity period of emulsion. Pickering emulsion has a wide range of applications in the oil and gas field due to its advantages of good stability and easy regulation. In this article, the formation, stabilization mechanism, and influencing factors of Pickering emulsions were introduced, and the application status and prospects of Pickering emulsions in oil and gas field were summarized. It was pointed out that Pickering emulsion has many advantages and important research value when applied in deep strata and complicated reservoirs. It is expected that this article can effectively reflect the application value of Pickering emulsion in oil and gas field and promote the application of Pickering emulsion in petroleum industry.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Caihua, Yachao Tian, Zihan Ma, and Linyi Zhou. "Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite." Foods 12, no. 12 (June 14, 2023): 2366. http://dx.doi.org/10.3390/foods12122366.

Full text
Abstract:
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G′ values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20–65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xingzhong, Dan Wang, Shilin Liu, and Jie Tang. "Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry." Foods 11, no. 24 (December 15, 2022): 4064. http://dx.doi.org/10.3390/foods11244064.

Full text
Abstract:
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensive overview of the recent advances in the Pickering emulsion stabilized by BCNF particles, including the classification, preparation method, and physicochemical properties of diverse BCNF-based particles as Pickering stabilizers, as well as surface modifications with other substances to improve their emulsifying performance and functionality. Additionally, this paper highlights the stabilization mechanisms and provides potential food applications of BCNF-based Pickering emulsions, such as nutrient encapsulation and delivery, edible coatings and films, fat substitutes, etc. Furthermore, the safety issues and future challenges for the development and food-related applications of BCNFs-based Pickering emulsions are also outlined. This work will provide new insights and more ideas on the development and application of nanofibril-based Pickering emulsions for researchers.
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, Rongzhen, Zhijian Tan, Wei Fan, Jingping Qin, Shiyin Guo, Hang Xiao, and Zhonghai Tang. "Deep-Eutectic-Solvent-in-Water Pickering Emulsions Stabilized by Starch Nanoparticles." Foods 13, no. 14 (July 21, 2024): 2293. http://dx.doi.org/10.3390/foods13142293.

Full text
Abstract:
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickering emulsion consisting of a DES (menthol:octanoic acid = 1:1) in water was prepared and stabilized using starch nanoparticles (SNPs). The emulsion was thoroughly characterized using various techniques, including optical microscopy, transmission microscopy, laser particle size analysis, and rheological measurements. The results demonstrated that the DES-in-water Pickering emulsion stabilized by the SNPs had excellent stability and retained its structural integrity for more than 200 days at room temperature (20 °C). This prolonged stability has significant implications for many applications, particularly in the field of storage and transportation. This Pickering emulsion based on DESs and SNPs is sustainable and stable, and it has great potential to improve green chemistry practices in various fields.
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Minghe, Shujin Cheng, Lei LÜ, Zhonghui Han, and Jinxing He. "Synergistic stabilization of a menthol Pickering emulsion by zein nanoparticles and starch nanocrystals: Preparation, structural characterization, and functional properties." PLOS ONE 19, no. 6 (June 6, 2024): e0303964. http://dx.doi.org/10.1371/journal.pone.0303964.

Full text
Abstract:
A Pickering emulsion was synergistically stabilised with zein nanoparticles (ZNPs) and starch nanocrystals (SNCs) to prepare it for menthol loading. After response surface optimisation of the emulsion preparation conditions, a Pickering emulsion prepared with a ZNPs:SNCs ratio of 1:1, a particle concentration of 2 wt% and a water:oil ratio of 1:1 provided the highest menthol encapsulation rate of the emulsions tested (83%) with good storage stability within 30 days. We examined the bilayer interface structure of the emulsion by optical microscopy, scanning electron microscopy, and confocal laser scanning microscopy. The results of simulated digestion experiments showed that the release rate of free fatty acid was 75.06 ± 1.23%, which ensured bioavailability. At the same time, the emulsions facilitated the slow release of menthol. Bacteriostatic studies revealed that the Pickering emulsion had a protective effect on menthol, with the most significant inhibitory effects on Escherichia coli and Staphylococcus aureus under the same conditions. Overall, this study proposes a novel approach for the application and development of l-menthol by combining it with Pickering emulsion.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Dong, Min Shen, Guofan Sun, Huiran Jin, Peng Cai, Zhihui Wang, Yeling Jin, Jing Chen, and Shijie Ding. "Facile immobilization of lipase based on Pickering emulsion via a synergistic stabilization by palygorskite–enzyme." Clay Minerals 54, no. 3 (August 1, 2019): 293–98. http://dx.doi.org/10.1180/clm.2019.40.

Full text
Abstract:
AbstractA Pickering emulsion was prepared via synergistic stabilization of a lipase and palygorskite particles. The optimum conditions for the stabilization of the Pickering emulsion, such as the concentrations of the palygorskite particles and lipase, were explored. The morphology of emulsion droplets was examined using digital optical microscopy and polarizing optical microscopy. The palygorskite–lipase co-stabilized Pickering emulsions were investigated by determination of the adsorption rate, pH and zeta potential of the aqueous dispersion, as well as by determining the contact angle values of the lipase solution on a palygorskite disc that was immersed in toluene. The catalytic performance of the immobilized lipase in the Pickering emulsion was studied via the investigation of its thermal stability, storage stability and reusability. The immobilized lipase showed greater stability than the free lipase. The lipase immobilized by Pickering emulsion retained a high level of activity even after seven periods of recycling.
APA, Harvard, Vancouver, ISO, and other styles
8

Potoroko, Irina, Irina Kalinina, and Anastasia Paimulina. "Properties Stability Forecast of Pickering Emulsion Structured by Bioactive Plant Particles." Food Industry 7, no. 4 (December 21, 2022): 111–19. http://dx.doi.org/10.29141/2500-1922-2022-7-4-13.

Full text
Abstract:
The new generation design and production of food systems with the declared physicochemical and bioactive properties is impossible without the use of science-grounded approaches based on a complex combination of experimental studies and quantum calculation algorithms. One of the promising food systems, actively studied by the scientists around the world, are the Pickering emulsions. Pickering emulsions act as an emulsion food products basis and a fortifying complex that can be an effective system for delivering biologically active substances to the human body. The study aimed at obtaining predictive solutions to achieve the properties stability of the Pickering emulsions stabilized by plant sonochemically structured bioactive particles. As a result of applying quantum chemical calculations using the online resource chemosophia.com and visualization programs, the authors obtained a stable molecular interaction complex between a lipophilic biologically active substance and linseed oil triglyceride, confirming the possibility of such composite development. As a procedure result for fucoidan biologically active substance depolymerization using ultrasonic low-frequency exposure, there was a reduction in the fucoidan particles size by 20-40 times. This led to an increase in its stabilizing properties in the Pickering emulsion based on linseed oil. The scanning electron microscopy results enabled to reveal that the biologically active stabilizer concentration of the Pickering emulsion occurred at the phase boundary predominantly. The resulting Pickering emulsions can act as the basis of emulsion food products enriched with the valuable fatty acid composition of linseed oil and biologically active substances used to stabilize the emulsion.
APA, Harvard, Vancouver, ISO, and other styles
9

Cho, Yu-Jin, Dong-Min Kim, In-Ho Song, Ju-Young Choi, Seung-Won Jin, Beom-Jun Kim, Jin-Won Jeong, Chae-Eun Jang, Kunmo Chu, and Chan-Moon Chung. "An Oligoimide Particle as a Pickering Emulsion Stabilizer." Polymers 10, no. 10 (September 27, 2018): 1071. http://dx.doi.org/10.3390/polym10101071.

Full text
Abstract:
A pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based oligoimide (PMDA-ODA) was synthesized by a one-step procedure using water as a solvent. The PMDA-ODA particles showed excellent partial wetting properties and were stably dispersed in both water and oil phases. A stable dispersion was not obtained with comparison PMDA-ODA particles that were synthesized by a conventional two-step method using an organic solvent. Both oil-in-water and water-in-oil Pickering emulsions were prepared using the oligoimide particles synthesized in water, and the size of the emulsion droplet was controlled based on the oligoimide particle concentration. The oligoimide particles were tested to prepare Pickering emulsions using various kinds of oils. The oil-in-water Pickering emulsions were successfully applied to prepare microcapsules of the emulsion droplets. Our new Pickering emulsion stabilizer has the advantages of easy synthesis, no need for surface modification, and the capability of stabilizing both oil-in-water and water-in-oil emulsions.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Jiongna, Hengxuan Zhang, Xue Sun, and Fangyu Fan. "Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles." Molecules 28, no. 14 (July 15, 2023): 5434. http://dx.doi.org/10.3390/molecules28145434.

Full text
Abstract:
This study was conducted to prepare walnut protein isolate nanoparticles (nano-WalPI) by pH-cycling, combined with the ultrasound method, to investigate the impact of various nano-WalPI concentrations (0.5~2.5%) and oil volume fractions (20~70%) on the stability of Pickering emulsion, and to improve the comprehensive utilization of walnut residue. The nano-WalPI was uniform in size (average size of 108 nm) with good emulsification properties (emulsifying activity index and stability index of 32.79 m2/g and 1423.94 min, respectively), and it could form a stable O/W-type Pickering emulsion. When the nano-WalPI concentration was 2.0% and the oil volume fraction was 60%, the best stability of Pickering emulsions was achieved with an average size of 3.33 μm, and an elastic weak gel network structure with good thermal stability and storage stability was formed. In addition, the emulsion creaming index value of the Pickering emulsion was 4.67% after 15 days of storage. This study provides unique ideas and a practical framework for the development and application of stabilizers for food-grade Pickering emulsions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pickering emulsion"

1

Brunier, Barthélémy. "Modeling of Pickering Emulsion Polymerization." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10320/document.

Full text
Abstract:
L’objectif du présent projet est de développer une méthodologie pour la modélisation fondamentale de procédés de polymérisation en émulsion sans tensioactif stabilisés par des particules inorganiques, dénommées "polymérisation en émulsion Pickering". La modélisation des systèmes de polymérisation en émulsion nécessite la modélisation de la distribution de taille des particules (PSD), qui est une propriété importante d'utilisation finale du latex. Cette PSD comprend des sous-modèles dédiés à la nucléation des particules, le transfert de masse entre les différentes phases (monomère, radicaux, stabilisant) et la coagulation des particules. Ces modèles devraient de préférence être validés expérimentalement de manière individuelle. La première partie principale du travail est consacrée à l'étude expérimentale. Cette partie peut être divisée en trois parties. La première partie décrit l'adsorption de particules inorganiques sur le polymère sans réaction. Une adsorption multicouche a été observée et l’isotherme B.E.T. a été capable de décrire cette adsorption. L'adsorption se révèle être plus importante pour une force ionique plus élevée. La dynamique d'adsorption semple être rapide et par conséquent le partage peut être considéré à l'équilibre pendant la polymérisation. La deuxième partie concerne l'étude de différents paramètres de réaction sur le nombre de particules et la vitesse de réaction dans des polymérisations ab initio. L'effet du mélange, de la concentration initiale des monomères et de la concentration de l'initiateur a été étudié. L'optimisation de ces conditions a été utile pour la partie de modélisation. La dernière partie décrit les différences entre plusieurs Laponite® à travers la polymérisation en émulsion ab initio du styrène.La deuxième partie principale du manuscrit a porté sur la modélisation de la polymérisation en émulsion Pickering. Le modèle de bilan de population et le nombre moyen de radicaux par particule ont été calculés en fonction de l'effet des particules organiques. La croissance des particules de polymère a été optimisée en ajustant les modèles d'entrée et de désorption des radicaux décrits dans la littérature aux données expérimentales. Aucune modification n'a été nécessaire, ce qui nous a permis de conclure que l'argile n'avait aucune influence sur l'échange radical. Cependant, la stabilisation joue un rôle important dans la production de particules de polymère. Le modèle de nucléation coagulante a été capable de décrire le taux de nucléation et de prédire le nombre total de particules
The aim of the present project is to develop a methodology for fundamental modeling of surfactant-free emulsion polymerization processes stabilized by inorganic particles, referred to as “Pickering emulsion polymerization”. Modeling emulsion polymerization systems requires modeling the particle size distribution (PSD), which is an important end-use property of the latex. This PSD includes submodels dedicated to particle nucleation, mass transfer between the different phases (monomer, radicals, stabilizer), and particle coagulation. These models should preferably be individually identified and validated experimentally. The first main part of the work is dedicated to the experimental study. This part can be divided in three parts. The first part describes the adsorption of inorganic particles on polymer without reaction. Multilayer adsorption was observed and B.E.T. isotherm was able to describe this adsorption. The adsorption was found to be enhanced at higher ionic strength. The adsorption dynamics were found fast and therefore clay partitioning can be considered at equilibrium during polymerization. The second part concerned the investigation of different reaction parameters on the particles number and reaction rate in ab initio polymerizations. The effect of mixing, initial monomer concentration and initiator concentration were considered. Optimization of these conditions was useful for the modeling part. The last part described the differences between several LaponiteR_ grades through the ab initio emulsion polymerization of styrene. The second main part of the manuscript focused on the modeling of the Pickering emulsion polymerization. The population balance model and average number of radicals balance were adapted regarding the effect of inxi organic particles. The growth of the polymer particles was optimized by fitting the models of radicals’ entry and desorption described available in literature to the experimental data. No modification was needed, which allowed us to conclude that the clay had no influence on radical exchange. However, LaponiteR_ stabilization played an important role in polymer particles production. Coagulative nucleation model was able to describe the nucleation rate and predict the total number of particles
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Hongzhi. "Understanding of charge effects in pickering emulsions and design of double pickering emulsion templated composite microcapsules." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52965.

Full text
Abstract:
Particle stabilized emulsions, also known as Pickering emulsions, have been widely used in many industry applications. While the breadth of potential applications for Pickering emulsions keeps growing, our fundamental understanding of Pickering emulsions is still poor. My thesis work addresses both fundamentals and applications of particle stabilized emulsions. In the fundamental part of this thesis work, we investigated the effects of particle charge on particle adsorption and the particle contact angle, and to investigate their ensuing consequences for the stability of Pickering emulsions. We provided the first experimental hint that the widely overlooked image charge repulsion can hinder the adsorption of particle to the oil-water interface and prevent the formation of Pickering emulsions. Consistently with the experimental suggestion, our theoretical model also confirmed that the image charge repulsion has the right order of magnitude, relative to the other forces acting on the particle, to impede particle adsorption and Pickering emulsification. For the conditions in which particle adsorption to the liquid interface does occur, the particle contact angle will play an important role in influencing the stability and type of Pickering emulsions. Our experimental work showed that the equilibrium contact angle of particles at interfaces and the type of emulsions preferentially stabilized by these particles can be strongly affected by the particles' charging state, which we attribute to a free energy contribution from the electric field set up by the charged particle and its asymmetric counterion cloud. A very simplistic calculation considering only the dipole field as the leading contribution and treating the water phase as a perfect conductor, found that the energy stored in the field is indeed strong enough and shows sufficient variation with the particle position to shift the equilibrium position significantly from where it would be based on interfacial tension alone. In a separate, more application oriented part of this thesis work, we have fabricated microcapsules from double Pickering emulsions and demonstrated that the combined use of hard silica particles and pH-responsive dissoluble polymer particles at the emulsion interface imparts a combination of pH-responsiveness (stimulated pore opening) and structural integrity to resulting capsules. We have further demonstrated the first double Pickering emulsion templated capsules in which interfacial polymerization was carried out at both emulsion interfaces, yielding a capsule with two composite shells, composed of polyurethane and silica particles, and characterized the transport of a model cargo through the capsules walls as well as the capsules' mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
3

French, David James. "Fundamental aspects of Pickering emulsion stabilisation." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20450.

Full text
Abstract:
Much research has been carried out in recent years on Pickering emulsions, but understanding of the underlying physics requires considerable strengthening. This thesis seeks to address several fundamental aspects by presenting the results of recent experimental work. This work has focused on a model oil-in-water emulsion system stabilised by fluorescent colloidal silica particles and using a mixture of dodecane and isopropyl myristate as the oil phase. The phase behaviour of the particle dispersions has been altered using sodium chloride and sodium iodide, whilst sodium hydroxide and hydrochloric acid have been used to adjust the pH of samples. Comparisons are also made to emulsions stabilised by commercially available fumed silica. Conventionally, it was assumed that a weakly flocculating particle dispersion is required in order to generate a stable Pickering emulsion. It is shown in this work, however, that in some circumstances a weakly flocculating dispersion leads to the least stable emulsion. It is therefore argued that a more nuanced view of Pickering stabilisation is required, taking into account the factors affecting whether particles will adsorb to the interface during emulsification. Very recently it has begun to be suspected that Pickering emulsions sometimes aggregate due to the sharing of particles between two droplets, an effect known as bridging. In this thesis it is also shown that particle bridges can form in Pickering emulsions at high shear, and that they can subsequently be broken by low shear or by modifying the particle wettability. For the first time, electron microscopy has been used to provide direct evidence of droplets sharing particles. A simple theoretical model is developed, based on collisions between partially coated droplets, which captures the trends observed experimentally. It is argued that particle bridging may have been overlooked in the literature, and that the shear history of emulsions is a crucial determinant of subsequent behaviour. The deaggregation of bridged emulsions has been studied using a novel method where two different colours of particles are used. By starting with two emulsions which are bridged, each stabilised by a different colour of particle, and then using confocal microscopy to study them as they are mixed together and deaggregate, the processes involved in deaggregation can be elucidated. These experiments have also shown, for the first time, the dynamic nature of particles in Pickering emulsions; particles transfer readily between droplets when the samples are placed on a roller bank. It is found that a period of unbridging and rebridging takes place prior to deaggregation of the emulsions, and the timescale of deaggregation can be tuned by varying the particle wettability. The two-colour method has also been applied to the study of Pickering emulsions which are repeatedly sheared. It is found that limited coalescence is not reestablished simply by re-applying the shear rate which was used in the initial emulsification. This behaviour is attributed to the presence of an elastic shell of particles at the interface, which inhibits droplet breakup, and is in contrast to that of surfactant-stabilised emulsions, where increasing the stabiliser concentration makes droplets more liable to deform and breakup. Finally, a short study has been carried out attempting to increase the scale of the experiments presented in this thesis to sample volumes of approximately one litre. This study has demonstrated the relevance of particle bridging to industrial emulsification processes. Overall, experiments with carefully controlled model Pickering emulsions, including those using two colours of particles, have revealed the fundamental workings of these arrested systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Duffus, Laudina Jeneise. "Edible pickering emulsion technology : fabrication of edible particle stabilised double emulsions." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7456/.

Full text
Abstract:
Water-in-oil-in-water (W/O/W) double emulsion systems provide an innovative approach for the development of low-fat healthier foods. By replacing a proportion of the oil phase of a simple oil-in-water (O/W) emulsion with an internal water phase, the overall oil volume within the emulsion system can be decreased, with potentially negligible changes to its organoleptic properties. However, double emulsions are notoriously unstable for adequate periods of time, largely due to the existence of two oppositely curved water-oil (W/O) and oil-water (O/W) interfaces in close proximity. The present study investigates the use of Pickering stabilisation in order to enhance the stability of double emulsions. Pickering stabilisation mechanisms are reputed for superior, longer term stabilisation capacities when compared to conventional surfactant stabilised emulsions, but edible particles with Pickering functionality are scarce. The work in this thesis explores the impact of introducing Pickering stabilisation to a double emulsion structure, initially at only one of the two water/oil interfaces (either W/O or O/W) and ultimately across the entire interfacial areas. Initial work conducted centred on investigating the role of a range of edible particulates as potential Pickering stabilisers in simple emulsions (both W/O and O/W emulsion types). Based on the knowledge gained from these studies, a range of Pickering-Surfactant stabilised double emulsions (with particles or surfactant stabilising alternate interfaces), using a range of surfactants, and Pickering only stabilised double emulsion systems were prepared and analysed in terms of their microstructure, stability and encapsulation efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
5

Lopez, Antoine. "Novel bio-foams obtained by Pickering emulsion polymerisation." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14844.

Full text
Abstract:
Mestrado em Ciências e Engenharia de Materiais
Cork material have a very unique set of mechanical and physical properties especially high energy absorption, high friction, low acoustic and thermal conduction, good hydrophobicity and low density. These properties are strongly related to the chemical composition of cork, as well as its honeycomblike microstructure. In this study, inspired by these unique features, we have developed novel high performance bio-foams. Additionally, due to the urgent need to develop concomitantly sustainable materials and green processes, these novel foams were prepared using environment friendly approaches. In this study novel bio-foams mimicking cork were prepared by Pickering emulsion polymerisation of acrylated epoxydised soybean oil (AESO) using acetylated bacterial cellulose (Ac-BC) as an emulsion stabiliser. Following more closely cork structure and chemical composition, additional sustainable foams composed of higher concentrations of Ac-BC, were prepared. Also, the first steps towards the incorporation of lignin-like compounds in these foams were done. Both emulsions and ensuing foams were exhaustively characterised by means of several techniques, viz., SEM, optical microscopy, TGA, DMTA, FTIR, among others. The stabilisation of a 70% high internal phase water-in-AESO emulsion (HIPE) was verified. The cellular structure of the novel foams was confirmed by SEM analysis. It was found that depending on the ratio between water/oil we could tune pore dimensions and density, and hence to approach more closely cork microstructure. Moreover, the new foams thermal properties, especially in terms of thermal stability, were found to be close to cork behaviour. Furthermore, the mechanical properties of the foams were studied by DMTA, and the glass transition value was found to be between 30-60 oC.
A cortiça tem propriedades mecânicas e físicas únicas, em particular uma elevada capacidade de absorção de energia, elevada fricção, baixa condução acústica e térmica, elevada hidrofobicidade e baixa densidade. Estas propriedades estão relacionadas tanto com a sua composição química como com a sua microestrutura. Neste estudo, inspirado por estas características e morfologia únicas da cortiça, desenvolveram-se novas espumas de origem renovável com elevado desempenho. Adicionalmente, devido à necessidade premente em desenvolver concomitantemente materiais sustentáveis e processos verdes, estas novas bio-espumas foram preparadas seguindo abordagens amigas do ambiente. Em concreto, elas foram preparadas por polimerização em emulsão de Pickering de óleo de soja epoxidado acrilatado (AESO) usando celulose bacteriana acetilada como estabilizante da emulsão. Adicionalmente, seguindo mais de perto a microstrura e composição da cortiça, prepararam-se espumas sustentáveis contendo concentrações elevadas de celulose e foram dados os primeiros passos no sentido destas espumas incorporarem compostos semelhantes à lenhina. As diversas emulsões preparadas bem como as espumas resultantes foram caracterizadas detalhadamente através de várias técnicas, tais como SEM, microscopia óptica, TGA, DMTA, FTIR, estre outras. Verificou-se que a composição ótima da emulsão água-em-AESO foi estabilizada com 70% de água o que corresponde a uma emulsão do tipo ‘High Internal Phase Emulsion’ (HIPE). A microestrutura celular das novas bio-espumas foi confirmada por SEM, verificado que dependendo da composição inicial das emulsões (rácio água/óleo) pode-se controlar as dimensões e densidades dos poros e assim ajustar a porosidade à da cortiça. Estudou-se o comportamento térmico das espumas via TGA, podendo-se concluir que elas têm um comportamento semelhante à cortiça. É ainda de realçar que em termos de análise por DMTA, verificou-se que a temperatura de transição vítrea varia entre 30-60 oC.
APA, Harvard, Vancouver, ISO, and other styles
6

Lazrigh, Manal. "Floating photocatalytic Pickering emulsion particles for wastewater treatment." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19527.

Full text
Abstract:
The thesis constitutes an investigation into the production of floating photocatalytic particles (FPP) as a low cost, low carbon footprint and chemical-free wastewater treatment. It is anticipated that this approach would be particularly attractive for developing countries where it could reduce incidences of disease and pollution. The particles were manufactured from cocoa butter (CB), and contained either photocatalytic nanoparticle titanium dioxide TiO2 (P25) or silver-doped TiO2 (0.5% w/w). The photocatalytic activity of the particles was evaluated by means of the decolourisation of the dye indigo carmine (IC). Three arrangements were used; small scale treatment using Petri dishes, an 1800 ml batch-recirculation photoreactor and an 8 litre UV contactor. Membrane emulsification (ME) was the technique used here to generate particles of controlled size. The particles were in effect what are known as Pickering emulsions in which the solid fat core (CB) was stabilised by TiO2 nanoparticles, resulting in composite particles that float easily and can receive incident light to generate highly reactive free radical species. The FPPs were characterised by FEGSEM and EDs mapping analysis, and the images obtained displayed a spherical structure with a rough outer surface, and the EDs showed a good coverage of TiO2 on the surface of at a maximum loading of 10% w/w. Tests were conducted to assess the stability of the particles when used in repeated cycles. Reuse of the particles caused a significant drop of photodegradation activity after four cycles to 42% of that of freshly prepared particles. The correlation of photocatalytic activity with silver dosage was also investigated. The highest photocatalytic activity was achieved at 0.5 wt. % of silver doped TiO2 and was some 10% greater than for un- doped particles. The organic carbon release resulted from TOC analysis for the FPPs that were exposed to UV light for 8.5 hr in water was less than 1 wt. %. First order reaction kinetics were exhibited during decolourisation of IC dye with respect to the initial dye concentration, radiation intensity, percentage coverage of the liquid surface by the FPPs, and the catalytic loading. For a static system (i.e. no forced convection), the most effective surface coverage was identified as being in the range of 60 to 80%. A linear source spherical emission model (LSSE) was adopted to estimate the intensity of the incident radiation on the surface of the FPP layer in the photoreactor and validated. In addition, a preliminary kinetic model to describe of the effect of the photocatalytic active surface concentration of TiO2 as well as the efficient intensity flux in the kinetic model was developed for the FPP layer photoreactor.
APA, Harvard, Vancouver, ISO, and other styles
7

Faresin, Andrea. "Functional materials for Pickering emulsions." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3427313.

Full text
Abstract:
This doctoral thesis highlights the most interesting experimental results achieved between 2015 and 2018 by the author, during his stay in the laboratories of the Department of Chemical Sciences of the University of Padova. The fil rouge of this thesis work is Pickering Emulsions (PE); emulsions where solid particles alone are used as stabilizers instead of the typical molecular or macromolecular surfactants that are employed to produce widely used emulsions in pharmaceutics, drug delivery, cosmetics, food industry to name a few. Solid micro/nanoparticles accumulate at the interface between two immiscible liquids (typically denoted as oil and water phase) and stabilize droplets against coalescence. A great advantage of a PE is that it is relatively stable once made and that many solid particles can be endowed with useful characteristics: conductivity, responsiveness, porosity, catalysis and so on. The chemical modification of silica nanoparticles (SiNP) and their use as PE stabilizers is the first theme treated in this thesis work. SiNP are functionalized with hydrophobic molecular structures for tuning their wettability, and with photo-active moieties to impart photocatalytic properties. In addition, silica-based PE are used to confine special ingredients needed for the colorimetric detection of acetone whose presence is associated to triacetone triperoxide, a deadly explosive used by terrorists in recent attacks, and for the development of a testing kit in the form of a pen. Another interesting PE stabilizer is nanocrystalline cellulose (NCC). An extensive sperimentation was carried out to learn how to handle and to chemically functionalize NCC. This led to the development of robust protocols that allowed to install on cellulose nanocrystals a pH-sensitive dye and magnetic nanoparticles that were used to develop, as a proof of principle, a solid pH sensor for urea detection and a colorimetric/magnetic, doubly-responsive system. The modified NCC materials hold the potential as PE stabilizers whose study is underway. The last part of the thesis reports the study, in collaboration with prof. S. Gross of the Chemical Sciences Department in Padova and prof. E. Hensen of the University of Eindhoven, for the production of ZnS nanoparticles through a controlled nucleation and crystallization under continuous flow conditions at room temperature, in water and without the use of any stabilizing ligand. The colloids display an average size of 5 nm and an impressively high specific surface area of 287 m2/g. Nanostructured ZnS is well known to be a direct wide-bandgap semiconductor and, for its tunable photophysical and electrochemical properties, is used for a broad range of applications ranging from catalysis and photocatalysis to nonlinear optics, optoelectronic devices and optical bioimaging. The possibility to prepare stable nanoparticles without the need of special ligand stabilization open the interesting perspective to use those as-prepared particles directly from the continuous flow reactor to stabilize functional PE. Work in this direction is currently underway. Furthermore, a toolbox that was always available during this thesis work was flow chemistry, an ensemble of techniques for the manipulation of fluids on the micrometer scale. Such manipulation is carried out inside microchannels, confined environments whose geometries can be exploited to optimize unit operations – such as mixing and heat transfer – of profound interest for chemists. A flow chemistry approach was used to prepare ZnS nanoparticles and also to develop a selective bromination protocol of tetraphenyl porphyrins. This latter study, along with a study on the application of functionalized NCC as a flame retardant have been a unique opportunity to face interesting problems, although they were not related to the Pickering emulsions general theme of this thesis work.
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Chenhui. "Nanomaterials stabilized pickering emulsions and their applications in catalysis." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134131/1/Chenhui%20Han%20Thesis_Redacted.pdf.

Full text
Abstract:
This thesis is an exploratory study of nanomaterials stabilized Pickering emulsions and their applications. The study illustrates some novel emulsion behaviour through dynamic observation and develops a mechanically switchable emulsion based on the microstructure design of nanomaterials. The droplets of emulsion are demonstrated as an effective microreactor for chemical reactions that happen at the oil-water interface, showing the potential application of Pickering emulsion in catalysis.
APA, Harvard, Vancouver, ISO, and other styles
9

Vílchez, Villalba Alejandro. "Polymeric Macroporous Nanocomposites using highly concentrated emulsions as templates." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/104576.

Full text
Abstract:
The design of nanocomposites, which typically consist of polymeric matrices with embedded particles having at least one characteristic length in the nanometer range, has recently been the focus of a great attention. Nanocomposites, in a large variety of morphologies and distinct compositions are already on the market. In this context, the construction of novel porous nanocomposites, exhibiting hierarchical structures, will allow the development of innovative advanced materials with promising applications in many fields: catalysis, gas/liquid storage, gas purification, etc. The use of highly concentrated phase emulsions (HIPEs) as templates has been shown to be an effective route for the preparation of macroporous polymers. Specifically, the use of suitable surface-modified inorganic oxide nanoparticles as emulsions stabilizers (so called Pickering emulsions) provide an alternative approach to the classical surfactant-based systems, to obtain such hybrid organic-inorganic nanocomposite porous materials. Thanks to the ability of finely-divided solids to adsorb spontaneously at liquid-liquid interfaces, any functionality coming from the nanoparticles can be imparted to the materials, in a single-step preparation method. It has been described that, the resulting macroporous nanocomposites, obtained in Pickering highly concentrated emulsions, typically exhibit closed-cell structures and rather large pore sizes. These drawbacks are frequently overcome by combining simultaneously surfactants and particles. Nevertheless, there is a lack of systematic study on how the interactions between these two emulsifiers influence the final physicochemical properties of the materials obtained. For instance, contrary to what is often expected, the addition of particles to a surfactant-stabilized emulsion or inversely, the addition of surfactant to a particle-stabilized emulsion can negatively influence its stability, rather than enhance it. The main objective of this research work was to investigate the formation of polymeric macroporous nanocomposites with embedded functional nanoparticles, using W/O highly concentrated emulsions as templates. For this purpose, two kinds of nanoparticles with interesting functionalities have been used: - Superparamagnetic iron oxide nanoparticles - Titanium dioxide photocatalytic nanoparticles Styrene and the crosslinker divinylbenzene are used in the emulsion continuous phase, as a model monomer system. The emulsions are processed into macroporous materials by free-radical polymerization of such a continuous phase. In all cases, nanoparticles are included in the systems, and three different types of emulsions are studied using different approaches: (a) HIPEs stabilized with surfactants and prepared by the phase inversion method, containing nanoparticles inside the continuous phase. (b) HIPEs stabilized with nanoparticles, in absence of surfactant and prepared by the drop-wise addition method. The use of Pickering emulsions to obtain nanocomposite materials constitutes a very novel approach, recently first described. (c) HIPEs stabilized primary with nanoparticles with increasing amounts of surfactant molecules, prepared by the drop-wise addition method. In this work, special emphasis has been given to the study of the individual contribution of either nanoparticles or surfactants on the (in)stability of the resultant highly concentrated emulsions. Moreover, the precise role that each emulsifier plays, focusing on their interactions and the related emulsion stabilization mechanisms, has been investigated. In addition, we have study the arrangement of the nanoparticles in the resulting porous nanocomposites, with respect to several parameters such as particle size or surfactant concentration. Likewise, the main physical properties of the materials, such as macroporous structure, porosity, permeability or mechanical strength, have been compared. Finally, the magnetic properties and photocatalytic activity of the nanocomposite materials, which contained iron oxide and titanium dioxide nanoparticles, respectively, have been characterized.
La preparación de materiales constituidos por una matriz polimérica que contiene algún tipo de elemento inorgánico, como nanopartículas o nanotubos, ha generado durante los últimos años un enorme interés científico. Generalmente, estos materiales se denominan nanocompuestos. Actualmente, existen productos en el mercado en forma de sensores ópticos o productos en fase de desarrollo comercial, como poliolefinas reforzadas con arcilla en la industria automovilística. Uno de los campos de mayor actividad es la fabricación de materiales porosos avanzados, con aplicaciones en campos tan variados como el de membranas, purificación de gases o almacenamiento de líquidos/gases. Este trabajo de tesis tiene como objetivo principal el de obtener nanocomposites macroporosos con nanopartículas incorporadas, utilizando emulsiones altamente concentradas como plantilla. Para ello se han empleado emulsiones del tipo agua en aceite, estabilizadas tanto con tensioactivos como con nanopartículas (denominadas emulsiones de Pickering). La obtención de nanocompuestos macroporosos utilizando emulsiones de Pickering constituye un método novedoso descrito por primera vez recientemente. Con este propósito, se han utilizado dos tipos de nanopartículas funcionales: nanopartículas superparamagnéticas de óxido de hierro y nanopartículas fotocatalíticas de dióxido de titanio. Ambas han sido previamente funcionalizadas con ácido oleico para conferir hidrofobicidad a su superficie. Para obtener los materiales poliméricos, se ha llevado a cabo una polimerización entre el monómero estireno y el entrecruzante divinilbenceno en la fase externa de las emulsiones. De esta forma, se han obtenido materiales poliméricos porosos con nuevas funcionalidades magnéticas y fotocatalíticas. En primera instancia, se ha evaluado la interacción entre los dos emulsionantes empleados, nanopartículas y tensioactivos, y sus implicaciones en la estabilidad de las emulsiones altamente concentradas iniciales. Además, se ha estudiado la distribución de las nanopartículas en los materiales macroporosos obtenidos, en función de diversos parámetros como el tamaño o concentración de nanopartículas. Finalmente, se ha llevado a cabo una exhaustiva caracterización de las propiedades físicas de los materiales, tal como estructura macroporosa, porosidad, resistencia a la compresión o permeabilidad. También, se han estudiado las propiedades magnéticas y fotocatalíticas de los nanocompuestos, que contienen nanopartículas de óxido de hierro y de dióxido de titanio, respectivamente.
APA, Harvard, Vancouver, ISO, and other styles
10

Chianello, Giorgio. "Methacrylate based nanogels as drug delivery system and Pickering-Ramsden emulsion stabiliser." Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24565.

Full text
Abstract:
A novel methacrylate based nanogel system has been designed and developed for drug delivery applications. Methacrylates are optimal tuneable materials in terms of polarity, with combination of hydrophobic and hydrophilic moieties. Synthesis of these nanogels (NGs) was achieved via high dilution radical polymerisation using 2-(tert-butylamino)ethyl methacrylate (tBAEMA) as functional monomer, methacrylic acid (MAA) or ethylene glycol methyl ether methacrylate (EGMMA) as co-monomer and N,N'-methylenebis(acrylamide) (MBA) as cross-linker. Fabricated nanoparticles (NPs) were shown to possess water solubility higher than 2 mg/mL and diameter ranging from 5 to 20 nm (depending on nanogels' composition) as confirmed by either dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, nanogels produced have shown the ability to be employed as Pickering-Ramsden emulsion stabiliser. Their reduced size together with their emulsion capabilities make these nanoparticles a promising system for drug delivery, in particular taking into account skin as administration route. The size is in fact small enough to favour their penetration through the stratum corneum. Furthermore, in the view of their ability to form emulsions, nanogels could be used both as drug carrier and emulsifier in a final pharmaceutical formulation. NGs proved to be able to incorporate both small molecule such as fenoprofen (an anti-inflammatory non-steroidal drug) and big macromolecule such as siRNA. Cytotoxicity and cell metabolism were also evaluated by transfecting normal human dermal fibroblasts (NHDF), keratinocytes (HaCaT) and HeLa cells with nanogels. Data showed that nanoparticles did not affect viability, cells' morphology and adenosine triphosphate (ATP) levels up to high concentration of 100 μg/mL. In addition, preliminary studies indicated the ability of the nanogels to internalise and release their payload inside cells. In conclusion, the results confirmed that this novel system possesses all the desired characteristics to be used as a promising platform for drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Pickering emulsion"

1

Pickering Emulsion and Derived Materials. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-353-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clay Minerals and Synthetic Analogous as Emulsifiers of Pickering Emulsions. Elsevier, 2022. http://dx.doi.org/10.1016/c2021-0-00096-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wypych, Fernando, and Rilton Alves de Freitas. Clay Minerals and Synthetic Analogous As Emulsifiers of Pickering Emulsions. Elsevier, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wypych, Fernando, and Rilton Alves de Freitas. Clay Minerals and Synthetic Analogous As Emulsifiers of Pickering Emulsions. Elsevier, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.

Full text
Abstract:
Characteristically, surfactants in aqueous solution adsorb at interfaces and form aggregates (micelles of various shapes and sizes, microemulsion droplets, and lyotropic liquid crystalline phases). This book is about the behaviour of surfactants in solution, at interfaces, and in colloidal dispersions. Adsorption at liquid/fluid and solid/liquid interfaces, and ways of characterizing the adsorbed surfactant films, are explained. Surfactant aggregation in systems containing only an aqueous phase and in systems with comparable volumes of water and nonpolar oil are each considered. In the latter case, the surfactant distribution between oil and water and the behaviour of the resulting Winsor systems are central to surfactant science and to an understanding of the formation of emulsions and microemulsions. Surfactant layers on particle or droplet surfaces can confer stability on dispersions including emulsions, foams, and particulate dispersions. The stability is dependent on the surface forces between droplet or particle surfaces and the way in which they change with particle separation. Surface forces are also implicated in wetting processes and thin liquid film formation and stability. The rheology of adsorbed films on liquids and of bulk colloidal dispersions is covered in two chapters. Like surfactant molecules, small solid particles can adsorb at liquid/fluid interfaces and the final two chapters focus on particle adsorption, the behaviour of adsorbed particle films and the stabilization of Pickering emulsions.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pickering emulsion"

1

Bon, Stefan A. F. "Pickering Emulsion Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36199-9_264-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bon, Stefan A. F. "Pickering Emulsion Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1634–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schröder, Anja, Meinou N. Corstens, Kacie K. H. Y. Ho, Karin Schroën, and Claire C. Berton-Carabin. "Pickering Emulsions." In Emulsion-based Systems for Delivery of Food Active Compounds, 29–67. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119247159.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

López-Hernández, Raúl E., Ilse Monroy-Rodríguez, Sandra E. García-Solís, Maribel Cornejo-Mazón, Georgina Calderón-Domínguez, and Gustavo F. Gutiérrez-López. "Starch Nanocrystals as Pickering Emulsion Stabilizers." In Health-Promoting Food Ingredients during Processing, 309–26. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003332558-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shah, Bakht Ramin. "Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion." In Emulsion‐based Encapsulation of Antioxidants, 287–309. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62052-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, He, Lei Lei, Bo-Geng Li, and Shiping Zhu. "Development of Novel Materials from Polymerization of Pickering Emulsion Templates." In Polymer Reaction Engineering of Dispersed Systems, 101–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/12_2017_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Tong-yu, Ru-xiang Gong, Ting-ji Ding, Xue-na Zhang, Han Zhao, and Yu-fei Zheng. "Feasibility Analysis of Pickering Emulsion as Fracturing Fluid in Shale Gas Reservoir." In Springer Series in Geomechanics and Geoengineering, 1351–62. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0264-0_120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Destribats, Mathieu, Serge Ravaine, Valérie Heroguez, Fernando Leal-Calderon, and Véronique Schmitt. "Outstanding Stability of Poorly-protected Pickering Emulsions." In Trends in Colloid and Interface Science XXIII, 13–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13461-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Souza, Alana Gabrieli, Rennan Felix Da Silva Barbosa, Maurício Maruo Kato, Rafaela Reis Ferreira, Luiz Fernando Grespan Setz, Ivana Barros De Campos, Derval Dos Santos Rosa, and Eliana Della Coletta Yudice. "Cinnamon Pickering Emulsions as a Natural Disinfectant." In Nanofillers for Sustainable Applications, 394–419. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003400998-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Dan. "Applications of Pickering Emulsions in Petroleum Industry." In Springer Series in Geomechanics and Geoengineering, 3134–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1964-2_269.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pickering emulsion"

1

Uluata, Sibel, Seymanur Avci, and Gokhan Durmaz. "Comparing Physical Stability of Ultrasound and Pickering Emulsion Fortified with Vitamin D." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/cwoy2387.

Full text
Abstract:
"Vitamin D is one of the important fat-soluble vitamins for human health. The fact that this vitamin is much lower or higher than needed creates some problems. The World Health Organization (WHO) has recognized fortification as the most effective and safest method to meet the daily requirements of Vitamin D, addressing malnutrition. However, it has numerous difficulties such as loss during processing and storage during food fortification. In recent developments in nanotechnology, microencapsulation technique such as emulsion has great potential to design efficient nanomaterials with desired functionality for fortifying potentiators such as vitamin D. In this study, the effect of emulsifier type and different oil types on the formation and stability of emulsions was determined by measuring the changes in droplet properties (size and charge) under pH, salt and temperature conditions. Emulsion fortified with vitamin D was prepare by using oil phase (linseed, sunflower and MCT oil), emulsifier (pea and lentil protein) with ultrasonication and pickering emulsion method. The mean particle diameter of the pea protein-linseed oil-water emulsions formed using the ultrasonication method was 0.21 µm and the droplet charge was -37.3 mV. In the Pickering emulsion method, the mean particle diameter was 0.17 µm and the droplet charge was -26.75 mV. Also, particle size were 0.24, 22.14, 0.15 µm and particle charge were 24.60, -19.65, -27.80 mV at pH 3, 5 and 7, respectively. In addition, the particle size of pickering emulsion did not dramtically change at 30˚C and 90˚C temperatures and at 100 mM and 500 mM salt concentrations. As a result, pickering emulsion was physically more stable than ultrasound emulsion. This study was supported by Inonu University Scientific Research Projects Unit with The Project number :FYL-2021-2355"
APA, Harvard, Vancouver, ISO, and other styles
2

Ziqian, Li, Oliver Bogojevic, and Zheng Guo. "Oxidative Depolymerized Nanocelluloses for Pickering Emulsion." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berton-Carabin, Claire. "Lipid oxidation in Pickering emulsions." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/nfxb4600.

Full text
Abstract:
Pickering emulsions have garnered great interest in food science lately. These systems are characterized by the use of colloidal particles as physical stabilizers, that strongly anchor at the oil-water interface, instead of conventional emulsifiers. Many biobased particles have recently been identified as useful for this application, which holds potential for revolutionizing the field of food emulsion formulation [1,2]. However, although the potential in terms of physical stabilization of oil-in-water (O/W) emulsions has been thoroughly explored in the past years, how such emulsions may resist lipid oxidation, and whether particles could also be used to protect labile polyunsaturated lipids against oxidation is still questionable. This presentation aims at shedding light on this question by combining a review of the different types of food-compatible particles that have been recognized as useful to form Pickering emulsions, discussing examples of mitigation of lipid oxidation in such emulsions [3,4], and finally reflecting on the desired properties and possible targeted design of particles to achieve dual physical and oxidative stabilization of emulsions [5].[1] Berton-Carabin, C., & Schroën, K. (2015). Pickering emulsions for food applications: Background, trends and challenges. Ann. Rev. Food Sci. Technol., 6, 263–297.[2] Dickinson, E. (2020). Advances in food emulsions and foams: Reflections on research in the neo-Pickering era. Curr. Opin. Food Sci., 33, 52–60.[3] Schröder, A., Laguerre, M., Sprakel, J., Schroën, K., & Berton-Carabin, C. (2020). Pickering particles as interfacial reservoirs of antioxidants. J. Colloid Interface Sci., 575, 489–498.[4] Schröder, A., Laguerre, M., Tenon, M., Schroën, K., & Berton-Carabin, C. (2021). Natural particles can armor emulsions against lipid oxidation and coalescence. Food Chem., 347, 129003.[5] Berton-Carabin, C., Schröder, A., Schroën, K., & Laguerre, M. (2021). Lipid oxidation in Pickering emulsions. In Garcia-Moreno, P., Jacobsen, C., Sorensen, A. D., & Yesiltas, B. (Eds), Omega-3 Delivery Systems, Elsevier, Cambridge, MA., pp. 275-293.
APA, Harvard, Vancouver, ISO, and other styles
4

Hatchell, Daniel, Wen Song, and Hugh Daigle. "Effect of Inter-Particle Van Der Waals Attraction on the Stability of Pickering Emulsions in Brine." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206112-ms.

Full text
Abstract:
Abstract Pickering emulsions are stabilized by solid particles that occupy the fluid-fluid interface, physically preventing coalescence. Their stability in brine, where interparticle electrostatic repulsion is negligible and van der Waals (vdW) attraction dominates, makes them attractive for applications in porous media. Recent studies postulate that inter-droplet particle networks assemble in brine and aid Pickering emulsion stability to coalescence. This work experimentally assesses the effect of increasing interparticle vdW attraction on particle network strength and emulsion stability. We grafted 6 nm, 12 nm, and 20 nm silica nanoparticles with varying densities of polyethylene glycol (PEG) to prevent aggregation and dispersed them in either brine or deionized water (DI). We characterized the PEG-coated nanoparticles with thermogravimetric analysis and dynamic light scattering to determine PEG grafting density, diameter, and zeta potential. To generate oil-in-water emulsions, we sonicated dispersions of variable nanoparticle concentration and decane in equal volumes. We imaged the emulsions with microscopy and centrifuged them for 15 minutes at 5000 g of acceleration, using the volume of decane released after centrifugation as a measurement of emulsion coalescence to the applied force. Nanoparticle characterization confirmed successful grafting of PEG to the silica surface. We compared trends in emulsion stability as a function of salinity and particle diameter to changes in the relevant interparticle forces described by extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Analysis of microscopy images showed an increase in emulsion droplet diameter with decreasing nanoparticle concentration, salinity, and increasing nanoparticle diameter. Through centrifugation we observed that lower PEG grafting densities tended to produce more stable emulsions, suggesting that particles with high grafting densities and consequently high steric repulsion tended to repel and prevent formation of strong particle networks. Emulsions generated in DI coalesced more easily, indicating that electrostatic repulsion dominated relative to vdW attraction and that particle networks did not form. In brine, where electrostatic forces were screened out by counterions, the emulsions better resisted coalescence, consistent with the formation of a particle network. The strength of the network was inferred from the difference in emulsion stability to coalescence in DI and in brine. We measured a greater brine-DI stability difference of 3.7× for the larger 20 nm PEG-coated nanoparticles, compared with 3.3× and 2.2× for the 12 nm and 6 nm PEG-coated particles, respectively, further supporting the role of particle networks on emulsion stability.
APA, Harvard, Vancouver, ISO, and other styles
5

Chu, Yifu, and Lingyun Chen. "The effect of uniform whey protein microgels on oil-in-water emulsion property improvements and their potential application as fat replacers to prepare fat-reduced food products." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/txeh2871.

Full text
Abstract:
Protein-based microgels have the potential to mimic the oral lubrication properties of fat droplets at the fat-oral surface. As food proteins contribute to only 4 kcal per gram with high satiation, protein microgels are highly expected to be used as fat substitutes to develop novel low-calorie food, as a strategy against obesity prevalent. In our lab, we developed a facile method to fabricate uniform whey protein microgel with controllable size by modulating the protein-polysaccharide interactions. The microgel system (containing microgels, polysaccharides and unconcerted protein molecules) can stabilize oil-in-water emulsion with long-term stability and strong texture. The individual contributions of microgel, protein and polysaccharide will be discussed and the microgels can work both at the interface and in the bulk phase to improve the emulsion properties. Without any molecule surfactants such as protein molecules, the microgel alone can serve as an efficient Pickering stabilizer that can form oil-in-water Pickering emulsion with long-term stability and strong elasticity through strong hydrophobic interactions. When the interfacial layer is dominated by protein molecules, the microgels are dispersed in the bulk phase and the jamming effect brought by the microgels between the oil droplets effectively prevents flocculation and coalescence and strengthens the emulsion textures. This effect can make 30% oil emulsions show similar rheological and flow behavior to emulsions containing 50% oil. These results demonstrate that the protein microgel system has the potential for food applications in preparing €œlow fat€ emulsion-based food formulations with a comparable texture to that of full-fat counterparts.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xiuyu, and Vladimir Alvarado. "Effect of Salinity and pH on Pickering Emulsion Stability." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/115941-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saikia, Tinku, Abdullah Sultan, Assad Barri, and Abdulmalek Shamsan. "Emulsified Polymer Gel Pickering Emulsion for Conformance Control: Emulsion Formulation, Stability and Coreflooding Investigation." In SPE International Conference and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/199237-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Youyi, Peng Yu, and Jian Fan. "Study on Nanoparticle Stabilized Emulsions for Chemical Flooding Enhanced Oil Recovery." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21456-ms.

Full text
Abstract:
Abstract Chemical flooding is one of enhanced oil recovery (EOR) methods. The primary mechanism of EOR of chemical flooding is interfacial tension reduction, mobility ratio improvement and wettability changes. Recent studies showed that enhancing emulsification performance was beneficial to improve oil displacement efficiency. The formation of Pickering emulsion by nanoparticles could greatly improve the emulsifying performance. Using nanoparticles stabilized emulsions for chemical EOR application is a novel method. In this study, six different types of nanoparticles were selected, including hydrophilic nano silica, modified nano silica, carbon nanotubes and bentonite, etc. The nanoparticle combine with petroleum sulfonate could form a stable emulsion. Particle wettability were measured by using contact angle measurement (OCA20). Emulsifying intensity index was measured for different nanoparticle-stabilized emulsions. The mechanisms of nanoparticle-stabilized emulsions and relationship between emulsion stability have been investigated. The influence of dispersant on nanoparticle-stabilized emulsions also has been investigated. Nanoparticles mainly play a role in improving the stability of emulsions while surfactant play a major role in enhancing the emulsifying dispersion. The wettability of solid particles was one of the most important factors that affects the stability of emulsions. Partial hydrophobic nanoparticles were much easier to form stable emulsions than hydrophilic nanoparticles. Nanoparticles could form a three-dimensional network structure, thereby the stability of the emulsion was improved. Use of surfactant to disperse nanoparticles could further improve the emulsion stability. Finally, three nanoparticles stabilized emulsion formulations were developed for chemical flooding EOR. Nanoparticle-stabilized emulsions could improve oil displacement efficiency in chemical combination flooding. This research was used to optimize chemical combination flooding formulation and has a guidance function for application of nanoparticles in chemical flooding EOR.
APA, Harvard, Vancouver, ISO, and other styles
9

Meng, Zong, and Qinbo Jiang. "Polysaccharide microgel particles-dominated Pickering emulsion gels for oil structuring: Formation, interfacial layer construction, and physical properties." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/kiur5503.

Full text
Abstract:
Plant-derived polysaccharides have been gaining much attention for structuring liquid vegetable oils. In this work, the natural κ-carrageenan was mechanically treated to fabricate the nano-sized microgel particle (MP) as Pickering particles for preparing the Pickering emulsion gel (PEG). MPs, acting as building blocks, adsorbed at the surface of emulsion droplets and physically interacted with each other to gel the Pickering emulsion. Macroscopic and microscopic characterizations of MPs and PEGs were carried out. The moderate K+ (0-125 mM) could increase the flocculation and hardness of MPs to improve the viscoelasticity of PEGs. However, due to the K+-inducing shrinkage of κ-carrageenan hydrogels, the excessive K+ (250 mM) would make MPs unable to stabilize PEGs. Prepared MPs were more favorable for forming PEGs when pH was 8 and 9. The oil fraction (10, 20, 30, 40, and 50%) impacted physical properties of PEGs slightly. Three steps for the adsorption of κ-carrageenan MPs to the interface were proposed by tracking the formation of the interfacial layer using the interfacial rheological technique: (1) MPs moved to the interface from the continuous phase, forming the unsaturated adsorption layer; (2) MPs gradually covered the entire interface and began to interact with each other; (3) the adsorption was saturated, and MPs squeezed and interacted to form a compact viscoelastic interfacial layer. This green edible PEG based on sustainable plant-derived κ-carrageenan would provide great potentials in food applications, such as animal-derived solid fats replacement. Compared with the traditional PEG, κ-carrageenan microgel-based Pickering emulsion could gel itself with the low oil phase, which greatly reduced the calorie intake and helped to reduce the total content of saturated fat in high-calorie products (ice cream, chocolate, etc.). These findings can promote applications of structured vegetable oils as vital soft materials in replacing trans and saturated fats in foods.
APA, Harvard, Vancouver, ISO, and other styles
10

Mahboob, Ahmad, Abdullah Saad Sultan, Ahmad Akanbi Adewunmi, and Muhammad Shahzad Kamal. "Conformance Control in Harsh Reservoir Conditions Using a Novel Pickering Emulsion." In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214274-ms.

Full text
Abstract:
Abstract This study reports the application of emulsified and non-emulsified colloidal silica gels (CSGs) for conformance control in oilfields. Herein, non-emulsified CSGs were produced from 28% and 20% colloidal silica and sodium chloride (NaCl) of varying concentration from 1 – 10%, while emulsified CSGs were formed from 28% colloidal silica solution, diesel and the optimal emulsifier (cloisite 20 - CL20) following proper selection process and visual observation of gelation activities of different formulations of non-emulsified CSGs. Rheological determination was used to examine how various temperatures (80, 100 and 120 °C) affect the gelation of emulsified and non-emulsified CSGs. Also, effect of varying CL20 concentrations (500, 700, 1000 and 1250 ppm) on the viscosity of emulsified gel was evaluated. Experimental results showed that the gelation times of both emulsified and non-emulsified CSGs decreased with increasing temperature. However, the gelation periods of emulsified CSG at tested temperatures were longer than that of non-emulsified CSG. The complete gelation times of emulsified CSG at 80, 100 and 120 °C were 83 hours, 24.8 hours, and 7.1 hours, respectively; and that of non-emulsified CSG at these same temperatures were 36 hours, 10.5 hours and 6.2 hours, respectively. Likewise, it was noticed from the rheological determination that, as the CL20 concentration is increased, the emulsified CSG viscosity decreased which may hinder its final gel strength. Hence, about 500 ppm of CL20 would be suitable for the formation of an emulsified colloidal silica gel having the desired gelation time and gel strength.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Pickering emulsion"

1

Udoratina, Elena, Petr Sitnikov, Philip Legki, Julia Druz, Nikita Ushakov, and Michael Torlopov. Fabrication, characterization and biodegradability of oil–in–water pickering emulsions stabilized by cellulose nanocrystals. Peeref, July 2023. http://dx.doi.org/10.54985/peeref.2307p6144866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography