Academic literature on the topic 'Pickering emulsion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pickering emulsion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pickering emulsion"
Wang, Guozhen, Jin Li, Xiaoqin Yan, Yan Meng, Yanpeng Zhang, Xianhui Chang, Jie Cai, Shilin Liu, and Wenping Ding. "Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran." Polymers 16, no. 7 (March 22, 2024): 868. http://dx.doi.org/10.3390/polym16070868.
Full textFu, Lipei, Qianli Ma, Kaili Liao, Junnan An, Jinmei Bai, and Yanfeng He. "Application of Pickering emulsion in oil drilling and production." Nanotechnology Reviews 11, no. 1 (December 3, 2021): 26–39. http://dx.doi.org/10.1515/ntrev-2022-0003.
Full textLiu, Caihua, Yachao Tian, Zihan Ma, and Linyi Zhou. "Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite." Foods 12, no. 12 (June 14, 2023): 2366. http://dx.doi.org/10.3390/foods12122366.
Full textZhang, Xingzhong, Dan Wang, Shilin Liu, and Jie Tang. "Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry." Foods 11, no. 24 (December 15, 2022): 4064. http://dx.doi.org/10.3390/foods11244064.
Full textXie, Rongzhen, Zhijian Tan, Wei Fan, Jingping Qin, Shiyin Guo, Hang Xiao, and Zhonghai Tang. "Deep-Eutectic-Solvent-in-Water Pickering Emulsions Stabilized by Starch Nanoparticles." Foods 13, no. 14 (July 21, 2024): 2293. http://dx.doi.org/10.3390/foods13142293.
Full textYang, Minghe, Shujin Cheng, Lei LÜ, Zhonghui Han, and Jinxing He. "Synergistic stabilization of a menthol Pickering emulsion by zein nanoparticles and starch nanocrystals: Preparation, structural characterization, and functional properties." PLOS ONE 19, no. 6 (June 6, 2024): e0303964. http://dx.doi.org/10.1371/journal.pone.0303964.
Full textLi, Dong, Min Shen, Guofan Sun, Huiran Jin, Peng Cai, Zhihui Wang, Yeling Jin, Jing Chen, and Shijie Ding. "Facile immobilization of lipase based on Pickering emulsion via a synergistic stabilization by palygorskite–enzyme." Clay Minerals 54, no. 3 (August 1, 2019): 293–98. http://dx.doi.org/10.1180/clm.2019.40.
Full textPotoroko, Irina, Irina Kalinina, and Anastasia Paimulina. "Properties Stability Forecast of Pickering Emulsion Structured by Bioactive Plant Particles." Food Industry 7, no. 4 (December 21, 2022): 111–19. http://dx.doi.org/10.29141/2500-1922-2022-7-4-13.
Full textCho, Yu-Jin, Dong-Min Kim, In-Ho Song, Ju-Young Choi, Seung-Won Jin, Beom-Jun Kim, Jin-Won Jeong, Chae-Eun Jang, Kunmo Chu, and Chan-Moon Chung. "An Oligoimide Particle as a Pickering Emulsion Stabilizer." Polymers 10, no. 10 (September 27, 2018): 1071. http://dx.doi.org/10.3390/polym10101071.
Full textLiu, Jiongna, Hengxuan Zhang, Xue Sun, and Fangyu Fan. "Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles." Molecules 28, no. 14 (July 15, 2023): 5434. http://dx.doi.org/10.3390/molecules28145434.
Full textDissertations / Theses on the topic "Pickering emulsion"
Brunier, Barthélémy. "Modeling of Pickering Emulsion Polymerization." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10320/document.
Full textThe aim of the present project is to develop a methodology for fundamental modeling of surfactant-free emulsion polymerization processes stabilized by inorganic particles, referred to as “Pickering emulsion polymerization”. Modeling emulsion polymerization systems requires modeling the particle size distribution (PSD), which is an important end-use property of the latex. This PSD includes submodels dedicated to particle nucleation, mass transfer between the different phases (monomer, radicals, stabilizer), and particle coagulation. These models should preferably be individually identified and validated experimentally. The first main part of the work is dedicated to the experimental study. This part can be divided in three parts. The first part describes the adsorption of inorganic particles on polymer without reaction. Multilayer adsorption was observed and B.E.T. isotherm was able to describe this adsorption. The adsorption was found to be enhanced at higher ionic strength. The adsorption dynamics were found fast and therefore clay partitioning can be considered at equilibrium during polymerization. The second part concerned the investigation of different reaction parameters on the particles number and reaction rate in ab initio polymerizations. The effect of mixing, initial monomer concentration and initiator concentration were considered. Optimization of these conditions was useful for the modeling part. The last part described the differences between several LaponiteR_ grades through the ab initio emulsion polymerization of styrene. The second main part of the manuscript focused on the modeling of the Pickering emulsion polymerization. The population balance model and average number of radicals balance were adapted regarding the effect of inxi organic particles. The growth of the polymer particles was optimized by fitting the models of radicals’ entry and desorption described available in literature to the experimental data. No modification was needed, which allowed us to conclude that the clay had no influence on radical exchange. However, LaponiteR_ stabilization played an important role in polymer particles production. Coagulative nucleation model was able to describe the nucleation rate and predict the total number of particles
Wang, Hongzhi. "Understanding of charge effects in pickering emulsions and design of double pickering emulsion templated composite microcapsules." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52965.
Full textFrench, David James. "Fundamental aspects of Pickering emulsion stabilisation." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20450.
Full textDuffus, Laudina Jeneise. "Edible pickering emulsion technology : fabrication of edible particle stabilised double emulsions." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7456/.
Full textLopez, Antoine. "Novel bio-foams obtained by Pickering emulsion polymerisation." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14844.
Full textCork material have a very unique set of mechanical and physical properties especially high energy absorption, high friction, low acoustic and thermal conduction, good hydrophobicity and low density. These properties are strongly related to the chemical composition of cork, as well as its honeycomblike microstructure. In this study, inspired by these unique features, we have developed novel high performance bio-foams. Additionally, due to the urgent need to develop concomitantly sustainable materials and green processes, these novel foams were prepared using environment friendly approaches. In this study novel bio-foams mimicking cork were prepared by Pickering emulsion polymerisation of acrylated epoxydised soybean oil (AESO) using acetylated bacterial cellulose (Ac-BC) as an emulsion stabiliser. Following more closely cork structure and chemical composition, additional sustainable foams composed of higher concentrations of Ac-BC, were prepared. Also, the first steps towards the incorporation of lignin-like compounds in these foams were done. Both emulsions and ensuing foams were exhaustively characterised by means of several techniques, viz., SEM, optical microscopy, TGA, DMTA, FTIR, among others. The stabilisation of a 70% high internal phase water-in-AESO emulsion (HIPE) was verified. The cellular structure of the novel foams was confirmed by SEM analysis. It was found that depending on the ratio between water/oil we could tune pore dimensions and density, and hence to approach more closely cork microstructure. Moreover, the new foams thermal properties, especially in terms of thermal stability, were found to be close to cork behaviour. Furthermore, the mechanical properties of the foams were studied by DMTA, and the glass transition value was found to be between 30-60 oC.
A cortiça tem propriedades mecânicas e físicas únicas, em particular uma elevada capacidade de absorção de energia, elevada fricção, baixa condução acústica e térmica, elevada hidrofobicidade e baixa densidade. Estas propriedades estão relacionadas tanto com a sua composição química como com a sua microestrutura. Neste estudo, inspirado por estas características e morfologia únicas da cortiça, desenvolveram-se novas espumas de origem renovável com elevado desempenho. Adicionalmente, devido à necessidade premente em desenvolver concomitantemente materiais sustentáveis e processos verdes, estas novas bio-espumas foram preparadas seguindo abordagens amigas do ambiente. Em concreto, elas foram preparadas por polimerização em emulsão de Pickering de óleo de soja epoxidado acrilatado (AESO) usando celulose bacteriana acetilada como estabilizante da emulsão. Adicionalmente, seguindo mais de perto a microstrura e composição da cortiça, prepararam-se espumas sustentáveis contendo concentrações elevadas de celulose e foram dados os primeiros passos no sentido destas espumas incorporarem compostos semelhantes à lenhina. As diversas emulsões preparadas bem como as espumas resultantes foram caracterizadas detalhadamente através de várias técnicas, tais como SEM, microscopia óptica, TGA, DMTA, FTIR, estre outras. Verificou-se que a composição ótima da emulsão água-em-AESO foi estabilizada com 70% de água o que corresponde a uma emulsão do tipo ‘High Internal Phase Emulsion’ (HIPE). A microestrutura celular das novas bio-espumas foi confirmada por SEM, verificado que dependendo da composição inicial das emulsões (rácio água/óleo) pode-se controlar as dimensões e densidades dos poros e assim ajustar a porosidade à da cortiça. Estudou-se o comportamento térmico das espumas via TGA, podendo-se concluir que elas têm um comportamento semelhante à cortiça. É ainda de realçar que em termos de análise por DMTA, verificou-se que a temperatura de transição vítrea varia entre 30-60 oC.
Lazrigh, Manal. "Floating photocatalytic Pickering emulsion particles for wastewater treatment." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19527.
Full textFaresin, Andrea. "Functional materials for Pickering emulsions." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3427313.
Full textHan, Chenhui. "Nanomaterials stabilized pickering emulsions and their applications in catalysis." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134131/1/Chenhui%20Han%20Thesis_Redacted.pdf.
Full textVílchez, Villalba Alejandro. "Polymeric Macroporous Nanocomposites using highly concentrated emulsions as templates." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/104576.
Full textLa preparación de materiales constituidos por una matriz polimérica que contiene algún tipo de elemento inorgánico, como nanopartículas o nanotubos, ha generado durante los últimos años un enorme interés científico. Generalmente, estos materiales se denominan nanocompuestos. Actualmente, existen productos en el mercado en forma de sensores ópticos o productos en fase de desarrollo comercial, como poliolefinas reforzadas con arcilla en la industria automovilística. Uno de los campos de mayor actividad es la fabricación de materiales porosos avanzados, con aplicaciones en campos tan variados como el de membranas, purificación de gases o almacenamiento de líquidos/gases. Este trabajo de tesis tiene como objetivo principal el de obtener nanocomposites macroporosos con nanopartículas incorporadas, utilizando emulsiones altamente concentradas como plantilla. Para ello se han empleado emulsiones del tipo agua en aceite, estabilizadas tanto con tensioactivos como con nanopartículas (denominadas emulsiones de Pickering). La obtención de nanocompuestos macroporosos utilizando emulsiones de Pickering constituye un método novedoso descrito por primera vez recientemente. Con este propósito, se han utilizado dos tipos de nanopartículas funcionales: nanopartículas superparamagnéticas de óxido de hierro y nanopartículas fotocatalíticas de dióxido de titanio. Ambas han sido previamente funcionalizadas con ácido oleico para conferir hidrofobicidad a su superficie. Para obtener los materiales poliméricos, se ha llevado a cabo una polimerización entre el monómero estireno y el entrecruzante divinilbenceno en la fase externa de las emulsiones. De esta forma, se han obtenido materiales poliméricos porosos con nuevas funcionalidades magnéticas y fotocatalíticas. En primera instancia, se ha evaluado la interacción entre los dos emulsionantes empleados, nanopartículas y tensioactivos, y sus implicaciones en la estabilidad de las emulsiones altamente concentradas iniciales. Además, se ha estudiado la distribución de las nanopartículas en los materiales macroporosos obtenidos, en función de diversos parámetros como el tamaño o concentración de nanopartículas. Finalmente, se ha llevado a cabo una exhaustiva caracterización de las propiedades físicas de los materiales, tal como estructura macroporosa, porosidad, resistencia a la compresión o permeabilidad. También, se han estudiado las propiedades magnéticas y fotocatalíticas de los nanocompuestos, que contienen nanopartículas de óxido de hierro y de dióxido de titanio, respectivamente.
Chianello, Giorgio. "Methacrylate based nanogels as drug delivery system and Pickering-Ramsden emulsion stabiliser." Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24565.
Full textBooks on the topic "Pickering emulsion"
Pickering Emulsion and Derived Materials. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-353-9.
Full textClay Minerals and Synthetic Analogous as Emulsifiers of Pickering Emulsions. Elsevier, 2022. http://dx.doi.org/10.1016/c2021-0-00096-1.
Full textWypych, Fernando, and Rilton Alves de Freitas. Clay Minerals and Synthetic Analogous As Emulsifiers of Pickering Emulsions. Elsevier, 2022.
Find full textWypych, Fernando, and Rilton Alves de Freitas. Clay Minerals and Synthetic Analogous As Emulsifiers of Pickering Emulsions. Elsevier, 2022.
Find full textAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Full textBook chapters on the topic "Pickering emulsion"
Bon, Stefan A. F. "Pickering Emulsion Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36199-9_264-1.
Full textBon, Stefan A. F. "Pickering Emulsion Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1634–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_264.
Full textSchröder, Anja, Meinou N. Corstens, Kacie K. H. Y. Ho, Karin Schroën, and Claire C. Berton-Carabin. "Pickering Emulsions." In Emulsion-based Systems for Delivery of Food Active Compounds, 29–67. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119247159.ch2.
Full textLópez-Hernández, Raúl E., Ilse Monroy-Rodríguez, Sandra E. García-Solís, Maribel Cornejo-Mazón, Georgina Calderón-Domínguez, and Gustavo F. Gutiérrez-López. "Starch Nanocrystals as Pickering Emulsion Stabilizers." In Health-Promoting Food Ingredients during Processing, 309–26. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003332558-19.
Full textShah, Bakht Ramin. "Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion." In Emulsion‐based Encapsulation of Antioxidants, 287–309. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62052-3_8.
Full textZhu, He, Lei Lei, Bo-Geng Li, and Shiping Zhu. "Development of Novel Materials from Polymerization of Pickering Emulsion Templates." In Polymer Reaction Engineering of Dispersed Systems, 101–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/12_2017_15.
Full textZhu, Tong-yu, Ru-xiang Gong, Ting-ji Ding, Xue-na Zhang, Han Zhao, and Yu-fei Zheng. "Feasibility Analysis of Pickering Emulsion as Fracturing Fluid in Shale Gas Reservoir." In Springer Series in Geomechanics and Geoengineering, 1351–62. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0264-0_120.
Full textDestribats, Mathieu, Serge Ravaine, Valérie Heroguez, Fernando Leal-Calderon, and Véronique Schmitt. "Outstanding Stability of Poorly-protected Pickering Emulsions." In Trends in Colloid and Interface Science XXIII, 13–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13461-6_4.
Full textDe Souza, Alana Gabrieli, Rennan Felix Da Silva Barbosa, Maurício Maruo Kato, Rafaela Reis Ferreira, Luiz Fernando Grespan Setz, Ivana Barros De Campos, Derval Dos Santos Rosa, and Eliana Della Coletta Yudice. "Cinnamon Pickering Emulsions as a Natural Disinfectant." In Nanofillers for Sustainable Applications, 394–419. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003400998-21.
Full textSun, Dan. "Applications of Pickering Emulsions in Petroleum Industry." In Springer Series in Geomechanics and Geoengineering, 3134–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1964-2_269.
Full textConference papers on the topic "Pickering emulsion"
Uluata, Sibel, Seymanur Avci, and Gokhan Durmaz. "Comparing Physical Stability of Ultrasound and Pickering Emulsion Fortified with Vitamin D." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/cwoy2387.
Full textZiqian, Li, Oliver Bogojevic, and Zheng Guo. "Oxidative Depolymerized Nanocelluloses for Pickering Emulsion." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.525.
Full textBerton-Carabin, Claire. "Lipid oxidation in Pickering emulsions." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/nfxb4600.
Full textHatchell, Daniel, Wen Song, and Hugh Daigle. "Effect of Inter-Particle Van Der Waals Attraction on the Stability of Pickering Emulsions in Brine." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206112-ms.
Full textChu, Yifu, and Lingyun Chen. "The effect of uniform whey protein microgels on oil-in-water emulsion property improvements and their potential application as fat replacers to prepare fat-reduced food products." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/txeh2871.
Full textWang, Xiuyu, and Vladimir Alvarado. "Effect of Salinity and pH on Pickering Emulsion Stability." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/115941-ms.
Full textSaikia, Tinku, Abdullah Sultan, Assad Barri, and Abdulmalek Shamsan. "Emulsified Polymer Gel Pickering Emulsion for Conformance Control: Emulsion Formulation, Stability and Coreflooding Investigation." In SPE International Conference and Exhibition on Formation Damage Control. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/199237-ms.
Full textZhu, Youyi, Peng Yu, and Jian Fan. "Study on Nanoparticle Stabilized Emulsions for Chemical Flooding Enhanced Oil Recovery." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21456-ms.
Full textMeng, Zong, and Qinbo Jiang. "Polysaccharide microgel particles-dominated Pickering emulsion gels for oil structuring: Formation, interfacial layer construction, and physical properties." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/kiur5503.
Full textMahboob, Ahmad, Abdullah Saad Sultan, Ahmad Akanbi Adewunmi, and Muhammad Shahzad Kamal. "Conformance Control in Harsh Reservoir Conditions Using a Novel Pickering Emulsion." In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214274-ms.
Full textReports on the topic "Pickering emulsion"
Udoratina, Elena, Petr Sitnikov, Philip Legki, Julia Druz, Nikita Ushakov, and Michael Torlopov. Fabrication, characterization and biodegradability of oil–in–water pickering emulsions stabilized by cellulose nanocrystals. Peeref, July 2023. http://dx.doi.org/10.54985/peeref.2307p6144866.
Full text