Academic literature on the topic 'Pie artificial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pie artificial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pie artificial"
HUSSAIN, MUHAMMAD, IHSAN ULLAH, HATIM A. ABOALSAMH, GHULAM MUHAMMAD, GEORGE BEBIS, and ANWAR MAJID MIRZA. "GENDER RECOGNITION FROM FACE IMAGES WITH DYADIC WAVELET TRANSFORM AND LOCAL BINARY PATTERN." International Journal on Artificial Intelligence Tools 22, no. 06 (December 2013): 1360018. http://dx.doi.org/10.1142/s021821301360018x.
Full textLe, Thai, Cecilia Aragon, Hilaire J. Thompson, and George Demiris. "Elementary Graphical Perception for Older Adults: A Comparison with the General Population." Perception 43, no. 11 (January 1, 2014): 1249–60. http://dx.doi.org/10.1068/p7801.
Full textHu, Che-Chia, Sheng-Shan Chang, and Nai-Yun Liang. "Fabrication of antistatic fibers with core/sheath and segmented-pie configurations." Journal of Industrial Textiles 47, no. 5 (August 24, 2016): 569–86. http://dx.doi.org/10.1177/1528083716665629.
Full textPérez Tapias, José Antonio. "De la «muerte del Hombre» al transhumanismo. La parrhesía foucaultiana ante la pretensión de Homo Deus." Pensamiento. Revista de Investigación e Información Filosófica 76, no. 290 Extra (January 18, 2021): 657–77. http://dx.doi.org/10.14422/pen.v76.i290.y2020.012.
Full textHE, GUANGHUI, YUANYAN TANG, BIN FANG, and Patrick S. P. WANG. "BIONIC FACE RECOGNITION USING GABOR TRANSFORMATION." International Journal of Pattern Recognition and Artificial Intelligence 25, no. 03 (May 2011): 391–402. http://dx.doi.org/10.1142/s021800141100866x.
Full textSarkar, Mrinmoy, Abdollah Homaifar, Berat A. Erol, Mohammadreza Behniapoor, and Edward Tunstel. "PIE: a Tool for Data-Driven Autonomous UAV Flight Testing." Journal of Intelligent & Robotic Systems 98, no. 2 (September 4, 2019): 421–38. http://dx.doi.org/10.1007/s10846-019-01078-y.
Full textBeveridge, J. R., B. A. Draper, Jen-Mei Chang, M. Kirby, H. Kley, and C. Peterson. "Principal Angles Separate Subject Illumination Spaces in YDB and CMU-PIE." IEEE Transactions on Pattern Analysis and Machine Intelligence 31, no. 2 (February 2009): 351–63. http://dx.doi.org/10.1109/tpami.2008.200.
Full textROH, MYUNG-CHEOL, and SEONG-WHAN LEE. "PERFORMANCE ANALYSIS OF FACE RECOGNITION ALGORITHMS ON KOREAN FACE DATABASE." International Journal of Pattern Recognition and Artificial Intelligence 21, no. 06 (September 2007): 1017–33. http://dx.doi.org/10.1142/s0218001407005818.
Full textARCHITECTURE, Barclay &. Crousse. "El Lugar de la Memoria." EN BLANCO. Revista de Arquitectura 11, no. 26 (April 30, 2019): 32. http://dx.doi.org/10.4995/eb.2019.11567.
Full textPrieto, Eduardo. "Arcadias bajo vidrio." Cuaderno de Notas, no. 18 (November 20, 2017): 1. http://dx.doi.org/10.20868/cn.2017.3595.
Full textDissertations / Theses on the topic "Pie artificial"
Miranda, Quispe Bruno Sebastian. "Diseño conceptual de un pie protésico que permite determinar las fuerzas de contacto pie-piso sobre pendientes, escalones y superficies con irregularidades durante la marcha." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/19471.
Full textTrabajo de investigación
Yoo, Doo-Sung. "Organ-machine Hybrids (Artificial Animals)." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281418915.
Full textAriss, Joseph, and Salim Rabat. "A comparison between a traditional PID controller and an Artificial Neural Network controller in manipulating a robotic arm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259365.
Full textRobotoch kontrollindustrin implementerar olika kontrolltekniker för att styra rörelsen och placeringen av en robotarm. PID-styrenheter är de mest använda kontrollerna inom roboten och kontrollindustrin på grund av dess enkelhet och lätt implementering. PID:s prestanda lider emellertid i bullriga miljöer. I denna undersökning undersöks en styrenhet baserad på Artificiell Neuralt Nätverk (ANN) som kallas modellreferenskontrollen för att ersätta traditionella PID-kontroller för att styra en robotarm i bullriga miljöer. Simuleringar och implementeringar av båda kontrollerna utfördes i MATLAB. Utbildningen av ANN:et gjordes också i MATLAB med hjälp av Supervised Learning (SL) -modellen och LevenbergMarquardt backpropagationsalgoritmen. Resultat visar att ANN-implementeringen fungerar bättre än traditionella PID-kontroller i bullriga miljöer.
Yin, Choon Meng. "Application of artificial neural networks to condition monitoring." Thesis, University of Aberdeen, 1993. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=124315.
Full textSchöne, Pia [Verfasser], Ludger [Gutachter] Wessjohann, and Ewa [Gutachter] Swieżewska. "Enzymatic synthesis of natural and artificial polyprenols / Pia Schöne ; Gutachter: Ludger Wessjohann, Ewa Swieżewska." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://d-nb.info/121073138X/34.
Full textStarkey, Andrew J. "Condition monitoring of ground anchorages using artificial intelligence techniques." Thesis, University of Aberdeen, 2001. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=217212.
Full textSantos, Hilton Seheris da Silva. "Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1743.
Full textMade available in DSpace on 2017-07-18T19:13:43Z (GMT). No. of bitstreams: 1 HiltonSantos.pdf: 3137200 bytes, checksum: a7b77b12eeb29959ab49e7ef675229d9 (MD5) Previous issue date: 2017-06-27
The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error.
O surgimento de novas plantas industriais com grande complexidade e a necessidade de melhorar a operação das plantas já existentes tem fomentado o desenvolvimento de sistemas de controle de alto desempenho, estes sistemas devem atender não só as especificações de projeto, tal como: figuras de mérito, mas também devem operar com um custo mínimo e sem causar impactos desastrosos para o meio ambiente. Motivados por esta demanda, apresenta-se nesta dissertação o desenvolvimento de métodos para sintonia online dos parâmetros dos sistemas de controle, ie, apresenta-se uma metodologia para a sintonia online de controladores PID adaptativo e ótimo via Redes Neurais Artificiais (RNAs). A abordagem desenvolvida nesta dissertação tem base as ações dos controladores PID de três termos, redes neurais artificiais com funções de base radial e Controle preditivo baseado em modelo (MPC - Model Predictive Control), a partir da união destas abordagens elabora-se a formulação geral do controlador PID Adaptativo-Ótimo via redes neurais artificiais, com sintonia online. A metodologia de ajuste online dos parâmetros da RNA está no contexto do MPC para predição de saída da planta. Para o caso do controlador PID, tem-se a modificação da estrutura padrão com o objetivo de adaptação em função do erro. O ajuste dos termos do controlador PID e da predição da saída na planta, de forma ótima, é realizada pelo ajustes dos pesos da RNA-RBF. Além disso, apresenta-se a implementação indoor do sistema de controle desenvolvido para o posicionamento de um painel fotovoltaico. As avaliações de desempenho do sistema proposto são obtidos de resultados de experimentos computacionais que são baseados em modelos matemáticos e experimentos em hardware que são obtidos de um modelo reduzido de um painel fotovoltaico. Por fim, comparando o PID clássico com o controlador desenvolvido constatou-se que este último apresenta mais flexibilidade para inserir novas métricas de desempenho e os resultados atingidos são melhores do que os parâmetros obtidos por meio da sintonia do PID clássica, tais como: métodos de Ziegler-Nichols ou tentativa e erro
Ara?jo, Renan Pires de. "Modelagem da velocidade de um PIG instrumentado usando redes neurais artificiais." PROGRAMA DE P?S-GRADUA??O EM CI?NCIA E ENGENHARIA DE PETR?LEO, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/23718.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-08-07T15:40:48Z (GMT) No. of bitstreams: 1 RenanPiresDeAraujo_DISSERT.pdf: 4838615 bytes, checksum: 6a4a4de336f3ed012ff9d79a80113a5c (MD5)
Made available in DSpace on 2017-08-07T15:40:48Z (GMT). No. of bitstreams: 1 RenanPiresDeAraujo_DISSERT.pdf: 4838615 bytes, checksum: 6a4a4de336f3ed012ff9d79a80113a5c (MD5) Previous issue date: 2017-06-22
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES)
A passagem de um PIG ? uma t?cnica bastante empregada na inspe??o de dutos de longo comprimento e principalmente enterrados, valendo-se do diferencial de press?o sobre o mesmo para impulsion?-lo. Por?m, durante a inspe??o, um dos problemas que pode ocorrer ? a parada do PIG por causa de incrusta??es severas ou defeitos de fabrica??o/instala??o dos dutos, fazendo com que o instrumento pare e sua posterior libera??o com altas velocidades devido ao ac?mulo de press?o ? montante. Este trabalho prop?e o uso de redes neurais artificiais a fim de modelar a rela??o entre o diferencial de press?o sobre o PIG e sua velocidade durante o seu trajeto no interior do duto. Para tanto, foi empregado um sistema supervis?rio para a captura dos dados de press?o ao longo da tubula??o de teste e um od?metro acoplado ao PIG para a dos dados de velocidade. Foram considerados dois modelos de redes neurais artificiais, no caso a rede MLP e a rede NARX, sendo esta ?ltima uma rede recursiva. Os resultados de treinamento e valida??o mostraram que os modelos por redes neurais artificiais foram eficientes para estimar a velocidade do PIG.
The passage of a PIG is a technique quite used in inspection of big length and principally buried pipes using the pressure differential on it to impulse itself. But, during the inspection, one of the problems that may occur is the stop of the PIG because of severe incrustations or fabrication/installation defects of the pipes, doing the halt of the instrument and its posterior release with high velocities due to the accumulate of pressure at back part. This work purpose the use of neural networks in order to model the relation between the differential pressure on the PIG and its velocity during your path in the tube. Therefore, it was used a supervisory system to capture the pressure data along the test pipe and an odometer coupled to the PIG for the velocity data. It was considered two neural network models, in the case the MLP and NARX networks, the latter being a recurrent network. The training and validation results showed that the models by neural networks were efficient to estimate the velocity of the PIG.
SILVA, Jeydson Lopes da. "Controle eficiente com ferramentas de inteligência artificial em um sistema de exaustão." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/24927.
Full textMade available in DSpace on 2018-06-26T21:01:35Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Jeydson Lopes da Silva.pdf: 5014155 bytes, checksum: 7b7d71a2247ab166650f14e229d29d1f (MD5) Previous issue date: 2017-02-20
FACEPE
A energia elétrica é considerada como um dos principais insumos do setor industrial; sua disponibilidade, qualidade e custo são diretamente ligados à capacidade competitiva deste setor. Com o aumento dos custos da eletricidade e da emissão de gases causadores do efeito estufa, ações voltadas para o uso eficiente deste insumo tornam-se cada vez mais atrativas. Uma parte muito importante da área de controle e automação dos processos industriais é a sintonia dos controladores PID, uma vez que os processos, dentre outras coisas, dependem dos seus controladores, e estes para serem produtivos precisam estar bem sintonizados. O presente trabalho descreve uma maneira de sintonizar desses tipos de controladores baseada em inteligência artificial utilizando uma técnica de otimização evolutiva, conhecida como Otimização por Enxame de Partícula (PSO), técnica eficiente na otimização de funções com vários mínimos locais, funcionando desta forma como uma alternativa às diversas formas de sintonizações clássicas existentes. O objetivo deste trabalho é o de demonstrar o ganho em desempenho no controlador, tanto na parte energética como na ação de controle, proporcionado pela sintonia do controlador através do PSO. Uma parte importante da metodologia deste trabalho é a possibilidade da implementação direta no sistema real dos parâmetros sintonizados do controlador, encontrados por meio da otimização por PSO via simulação computacional; para isso, foi necessária a modelagem do sistema de forma digital, a qual permitiu reproduzir os efeitos da dinâmica do processo real. A implementação real foi feita por meio do protótipo de um sistema de exaustão industrial, o qual é todo controlado por um controlador lógico programável (CLP), localizado no Laboratório de Sistemas Motrizes da Universidade Federal de Pernambuco, a partir do qual foi realizada a coleta de dados experimentais para a análise do desempenho do sistema quando do uso deste tipo de sintonia do controlador.
Electricity is considered as one of the main inputs of the industrial sector; its availability, quality and cost are directly related to the competitive capacity of this sector. With rising costs of electricity and the emission of greenhouse gases, actions aimed at the efficient use of this input become increasingly attractive. A very important part of the area of control and automation of industrial processes is the tuning of the parameters of the PID controllers, since the processes, among other things, depend on their controllers, and these to be productive must be well tuned. The present work describes a way of tuning these types of controllers based on artificial intelligence using an evolutionary optimization technique, known as Particle Swarm Optimization (PSO), an efficient technique for optimizing functions with several local minimums, working in this way as a different form of classical tuning. The objective of this work is to demonstrate the gain in performance in the controller, both in the energy part and in the control action, provided by the controller tuning through the PSO. An important part of the methodology of this work is the possibility of directly implementing in the real system the tuned parameters of the controller, found by means of PSO optimization through computational simulation; for this it was necessary to model the system in digital form, which allowed to reproduce the effects of the actual process dynamics. The actual implementation was done through the prototype of an industrial exhaust system, which is all controlled by means of a PLC, located in the Laboratory of Motor Systems of the Federal University of Pernambuco, from which the collection of experimental data for the analysis of the performance of the system when using this type of controller tuning.
Souza, João Olegário de Oliveira de. "Metaheurísticas aplicadas na sintonia de controladores PID: estudo de casos." Universidade do Vale do Rio dos Sinos, 2013. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4457.
Full textMade available in DSpace on 2015-07-15T14:25:14Z (GMT). No. of bitstreams: 1 João Olegário de Oliveira de Souza.pdf: 4255697 bytes, checksum: 53d282b67d9c0e2f0b8d76e886a38a6f (MD5) Previous issue date: 2013-01-31
Nenhuma
Os controladores do tipo Proporcional, Integral e Derivativo, comumente denominados de PID, são largamente utilizados no controle de processos industriais, tanto em sistemas monovariáveis quanto em sistemas multivariáveis. Hoje, cerca de 95% dos controladores utilizam este tipo de estrutura na indústria. O grande problema é que grande parte deles estão mal sintonizados, comprometendo em muitos casos o desempenho de malhas industriais. Neste trabalho é apresentada uma revisão geral sobre os algoritmos inspirados na natureza, Simulated Annealing e Algoritmos Genéticos (fundamentos, características, parâmetros, operadores) e sua aplicação ao problema da sintonia de controladores PID monovariáveis e multivariáveis. É estabelecida, através de estudo de casos, uma análise comparativa entre estas sintonizações com metaheurísticas e os métodos consagrados na literatura em aplicações industriais convencionais, utilizando como função de avaliação o índice Integral do Erro Absoluto ponderado pelo Tempo (ITAE). O trabalho também propõe o estudo de controladores PID através de Algoritmos Genéticos Multiobjetivos, que satisfaçam dois critérios de desempenho: overshoot e o índice de desempenho Integral do Erro Quadrático ponderado pelo Tempo (ITSE). Conforme demonstrado pelos resultados obtidos, pode-se afirmar que a metaheurística Algoritmos Genéticos é um método eficiente e confiável para a otimização de problemas de sintonia de controladores PID.
The Proportional, Integral and Derivative controllers, commonly called PID controllers, are widely used in industrial process control, in both SISO and multivariable systems. Today about 95% of controllers use this type of structure in the industry. The big problem is that most of them are poorly tuned, in many cases compromising the performance of industrial loops. This work presents a general review on nature-inspired algorithms, Simulated Annealing and Genetic Algorithms (basement, characteristics, parameters, operators) and its application in the problem of tuning PID controllers in both single variable and multivariable systems. There will be through case studies, a comparative analysis of these metaheuristics with established methods in the literature in conventional industrial applications using as evaluation function the Integral of time multiplied by the Absolute Error (ITAE) index. The work also proposes the study of PID controllers using multiobjective genetic algorithms which meet two performance criteria: overshoot and the Integral Time Square Error (ITSE) index. The results obtained confirm that Genetic Algorithms are an effective and reliable method to optimize complex problems.
Books on the topic "Pie artificial"
Lü ding xiang jiao pei he, jia gong yu ying yong. Beijing: Hua xue gong yeh chu ban she, 2002.
Find full textÜnal, Muhammet. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textMichael, Newton. Natural and artificial regeneration of whiteleaf manzanita in competition studies. Corvallis, OR: Oregon State University, College of Forestry, 1985.
Find full textSluder, Earl R. Further comparisons between infection of loblolly and slash pines by fusiform rust after artificial inoculation or planting. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1986.
Find full textJi suan zhi neng yu ke xue pei fang: Computational intelligence and scientific blending. Beijing: Ke xue chu ban she, 2008.
Find full textJ, May Bella, ed. Lower limb amputations: A guide to rehabilitation. Philadelphia: F.A. Davis, 1986.
Find full textCollazo, A. Madrigal. Estado actual de las investigaciones sobre claras: Primeros resultados obtenidos en una experiencia en masa artificial de Pinus sylvestris L. en el sistema central. Madrid, España: Ministerio de Agricultura, Pesca y Alimentación, 1985.
Find full textJ, Schneider Frederick, and Rehabilitation Institute of Chicago, eds. Lower extremity amputation: A guide to functional outcomes in physical therapy management. Rockville, Md: Aspen Systems Corp., 1986.
Find full textCoggins, S. Linking survey detection accuracy with ability to mitigate populations of mountain pine beetle. Victoria, B.C: Pacific Forestry Centre, 2009.
Find full textBook chapters on the topic "Pie artificial"
Figueroa, Rubén, and C. M. Müller-Karger. "Análisis de esfuerzo por el Método de Elementos Finitos en el Proceso de Diseño de Pie Artificial." In IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, 732–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74471-9_170.
Full textvan den Broek, Eva, and Peter M. Todd. "Piep Piep Piep – Ich Hab’ Dich Lieb: Rhythm as an Indicator of Mate Quality." In Advances in Artificial Life, 425–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39432-7_45.
Full textÜnal, Muhammet, Ayça Ak, Vedat Topuz, and Hasan Erdal. "Artificial Neural Networks." In Optimization of PID Controllers Using Ant Colony and Genetic Algorithms, 5–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32900-5_2.
Full textKazikova, Anezka, Krystian Łapa, Michal Pluhacek, and Roman Senkerik. "Cascade PID Controller Optimization Using Bison Algorithm." In Artificial Intelligence and Soft Computing, 406–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61401-0_38.
Full textJones, A. H., and P. B. de Moura Oliveira. "Genetic Design of Robust PID Controllers." In Artificial Neural Nets and Genetic Algorithms, 575–78. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6492-1_127.
Full textNorris, Donald J. "Introduction to Artificial Intelligence." In Beginning Artificial Intelligence with the Raspberry Pi, 1–15. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2743-5_1.
Full textYang, Jianhua, Wei Lu, and Wenqi Liu. "PID Controller Based on the Artificial Neural Network." In Lecture Notes in Computer Science, 144–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28648-6_22.
Full textMonekosso, Ndedi, and Paolo Remagnino. "Phe-Q : A Pheromone Based Q-Learning." In AI 2001: Advances in Artificial Intelligence, 345–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45656-2_30.
Full textJones, A. H. "Genetic Tuning of Neural Non-Linear PID Controllers." In Artificial Neural Nets and Genetic Algorithms, 412–15. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-7535-4_107.
Full textNorris, Donald J. "Machine Learning: Artificial Neural Networks." In Beginning Artificial Intelligence with the Raspberry Pi, 171–209. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2743-5_7.
Full textConference papers on the topic "Pie artificial"
Pothitos, Nikolaos, and Panagiotis Stamatopoulos. "Piece of Pie Search." In SETN '16: 9th Hellenic Conference on Artificial Intelligence. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2903220.2903242.
Full textXie, Yongsheng, Hong Ding, and Fendong Huang. "Design of Temperature and Humidity Measuring System Based on Raspberry Pie." In AICS 2019: 2019 International Conference on Artificial Intelligence and Computer Science. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3349341.3349477.
Full textHe, Yuntao, and Yuesong Jiang. "Study of optimization and imaging of pie slice array for mm-wave synthetic aperture system." In Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic technology, and Artificial Intelligence, edited by Jiancheng Fang and Zhongyu Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.717307.
Full textYao, Yu, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, and Xiaoxiao Du. "Coupling Intent and Action for Pedestrian Crossing Behavior Prediction." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/171.
Full textYin, Ziyi, Ruijin Liu, Zhiliang Xiong, and Zejian Yuan. "Multimodal Transformer Networks for Pedestrian Trajectory Prediction." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/174.
Full textRico Sesé/Rodriguez Calatayud, Javier/Nuria. "¿Podrán las máquinas diseñar ovejas eléctricas?" In IV Congreso Internacional de Investigación en Artes Visuales. ANIAV 2019. Imagen [N] Visible. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/aniav.2019.8933.
Full textLima, P. C. R. "Pig Lift: A New Artificial Lift Method." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/36598-ms.
Full textKudlacak, Frantisek, and Tibor Krajcovic. "Artificial neural network for adaptive PID controller." In 2018 Cybernetics & Informatics (K&I). IEEE, 2018. http://dx.doi.org/10.1109/cyberi.2018.8337564.
Full textXitao Zheng and Yongwei Zhang. "A fish population counting method using fuzzy artificial neural network." In 2010 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2010. http://dx.doi.org/10.1109/pic.2010.5687462.
Full textWoodward, John R., and Amin Farjudian. "Artificial life, the second law of thermodynamics, and Kolmogorov Complexity." In 2010 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2010. http://dx.doi.org/10.1109/pic.2010.5687924.
Full textReports on the topic "Pie artificial"
Leduc, Daniel J., Thomas G. Matney, Keith L. Belli, and V. Clark Baldwin. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2001. http://dx.doi.org/10.2737/srs-rp-25.
Full textLeduc, Daniel J., Thomas G. Matney, Keith L. Belli, and V. Clark Baldwin. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2001. http://dx.doi.org/10.2737/srs-rp-25.
Full textArjang, B. Development of artificial sill pillar design, Lupin Mine, Northwest Territories, part 2: pre-mining ground stress determinations. Natural Resources Canada/CMSS/Information Management, 1990. http://dx.doi.org/10.4095/328731.
Full text