Academic literature on the topic 'Piecewise linear map'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piecewise linear map.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piecewise linear map"
White,, Marvin S., and Patricia Griffin. "Piecewise Linear Rubber-Sheet Map Transformation." American Cartographer 12, no. 2 (January 1985): 123–31. http://dx.doi.org/10.1559/152304085783915135.
Full textBAILLIF, MATHIEU, and ANDRÉ DE CARVALHO. "PIECEWISE LINEAR MODEL FOR TREE MAPS." International Journal of Bifurcation and Chaos 11, no. 12 (December 2001): 3163–69. http://dx.doi.org/10.1142/s0218127401004108.
Full textBegun, Nikita, Pavel Kravetc, and Dmitrii Rachinskii. "Chaos in Saw Map." International Journal of Bifurcation and Chaos 29, no. 02 (February 2019): 1930005. http://dx.doi.org/10.1142/s0218127419300052.
Full textKOLLÁR, LÁSZLÓ E., GÁBOR STÉPÁN, and JÁNOS TURI. "DYNAMICS OF PIECEWISE LINEAR DISCONTINUOUS MAPS." International Journal of Bifurcation and Chaos 14, no. 07 (July 2004): 2341–51. http://dx.doi.org/10.1142/s0218127404010837.
Full textRoberts, John A. G., Asaki Saito, and Franco Vivaldi. "Critical curves of a piecewise linear map." Chaos: An Interdisciplinary Journal of Nonlinear Science 31, no. 7 (July 2021): 073134. http://dx.doi.org/10.1063/5.0054334.
Full textZhusubaliyev, Z. T., D. S. Kuzmina, and O. O. Yanochkina. "Bifurcation Analysis of Piecewise Smooth Bimodal Maps Using Normal Form." Proceedings of the Southwest State University 24, no. 3 (December 6, 2020): 137–51. http://dx.doi.org/10.21869/2223-1560-2020-24-3-137-151.
Full textWang, Bin, Shihua Zhou, Changjun Zhou, and Xuedong Zheng. "A Novel Joint for Image Encryption and Coding Using Piecewise Linear Chaotic Map." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 7137–43. http://dx.doi.org/10.1166/jctn.2016.5683.
Full textAvrutin, Viktor, Michael Schanz, and Björn Schenke. "Breaking the continuity of a piecewise linear map." ESAIM: Proceedings 36 (April 2012): 73–105. http://dx.doi.org/10.1051/proc/201236008.
Full textWeimou, Zheng. "Symbolic Dynamics of the Piecewise Linear Standard Map." Communications in Theoretical Physics 29, no. 3 (April 30, 1998): 369–76. http://dx.doi.org/10.1088/0253-6102/29/3/369.
Full textJust, Wolfram. "Analytical Approach for Piecewise Linear Coupled Map Lattices." Journal of Statistical Physics 90, no. 3-4 (February 1998): 727–48. http://dx.doi.org/10.1023/a:1023272819435.
Full textDissertations / Theses on the topic "Piecewise linear map"
Commendatore, Pasquale, Ingrid Kubin, and Iryna Sushko. "Emerging Trade Patterns in a 3-Region Linear NEG Model: Three Examples." Springer, 2017. http://dx.doi.org/10.1007/978-3-319-65627-4_3.
Full textLima, Amanda de. "Transversal families of piecewise expanding maps." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01092015-215746/.
Full textSeja t:[a,b] → ft uma família C2 \"boa\" de transformações unimodais expansoras por pedaços com um ponto crítico c, que é transversal às classes topológicas de tais transformações. Dado um observável lipschitziano ∅, considere a função ℛ∅(t)=∫∅dµt, onde µt é a única probabiidade invariante absolutamente contínua de ft. Mostramos um teorema do limite central para o módulo de continuidade de ℝ∅, isto é limh→0m{t ∈ [a,b] : t + h ∈ [a,b] e 1/(Ψ(t)(-log|h|)½)((ℛ∅(t + h) - ℛ∅(t))/h) ≤ y} converge para 1/(2π)½ ∫y-∞e-s2/2ds. Vamos considerar agora f : 𝕊1 → 𝕊1 uma transformação expansora de classe C2+ε e v : 𝕊1 → ℝ uma função periódica de classe C1+ε. Mostramos que a única solução limitada da equação cohomológica torcida v(x) = α(f(x)) - Df(x)α(x) ou é de classe C1+ε ou não possui derivada em ponto algum. Mostramos também que se α não possui derivada em ponto algum, então o módulo de continuidade de α satisfaz um teorema do limite central, isto é, existe α > 0 tal que limh→0µ{x : (α(x + h) - α(x))/(σ𝓁h(-log|h|)½) ≤ y} = 1/(2π)½ ∫y-∞e-t2/2dt, onde µ é a probabilidade invariante absolutamente contínua associada a f.
Feltekh, Kais. "Analyse spectrale des signaux chaotiques." Phd thesis, INSA de Toulouse, 2014. http://tel.archives-ouvertes.fr/tel-01071919.
Full textBondarenko, Ievgen. "Groups generated by bounded automata and their schreier graphs." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2081.
Full textMarques, João Francisco Magro. "Dynamics of financial markets : study of an agent-based model." Master's thesis, Instituto Superior de Economia e Gestão, 2015. http://hdl.handle.net/10400.5/9328.
Full textNas últimas décadas, o mercado financeiro mundial tem enfrentado vários problemas e colapsos que motivaram anos conturbados para a economia real e para as famílias. Os sistemas dinâmicos apareceram na literatura de matemática financeira para ajudar a compreender melhor as características únicas destes mercados financeiros e a dinâmica do preço ao longo do tempo. Este trabalho consiste principalmente numa aproximação estatística ao sistema dinâmico de modelo de mercado com um ponto de descontinuidade introduzido por Tramontana, Westerhoff e Gardini (2010). Usando uma versão do modelo que produz órbitas caóticas, podemos observar, para parâmetros específicos, distribuições estacionárias. Por outras palavras, o sistema dinâmico pode ser caótico do ponto de vista do estudo das órbitas, porém, em termos estatísticos, é assintoticamente previsível, isto é, a maioria das trajetórias converge para um atractor que nós conseguimos descrevê-lo estatisticamente. Ainda, para os parâmetros apropriados, o modelo pode projetar um comportamento absolutamente errático, mesmo numa aproximação estatística. Para este último, nós concluímos que a previsão do preço é impossível uma vez que só conseguimos restringir os nossos prognósticos a um intervalo invariante suficientemente grande que contém toda a dinâmica do preço.
Over the past few decades, the global financial market has been facing multiple distresses and crashes which led to troubled years for the real economy and families. Dynamical systems emerged in the mathematical finance literature to help comprehending better the unique characteristics of these financial markets and the price dynamics over the time. This work consists mainly of a statistical approach of the one discontinuity point dynamical system market model introduced by Tramontana, Westerhoff and Gardini (2010). Using a model's version that produces chaotic orbits, we can observe stationary distributions under specific parameters. In other words, the dynamical system can be chaotic in a point-wise perspective, however, from a statistical approach, it can be asymptotically predictable, that is, most trajectories converge to an attractor which we can describe statistically. Still, under the proper parameters, the model may project an absolute erratic behavior, even in the statistical approach sense. For the latter, we conclude the price forecast is impossible because we can only restrict our prognoses to an invariant set sufficient large whose contain the whole price dynamic.
SILVA, Thársis Souza. "Equações Diferenciais por partes:ciclos limite e cones invaiantes." Universidade Federal de Goiás, 2011. http://repositorio.bc.ufg.br/tede/handle/tde/1945.
Full textIn this work, we consider classes of discontinuous piecewise linear systems in the plane and continuous in the space. In the plane, we analyze systems of focus-focus (FF), focusparabolic (FP) and parabolic-parabolic (PP) type, separated by the straight line x = 0, and we prove that can appear until two limit cycles depending of parameters variations. Also we study a specific system, piecewise, with two saddles (one fixed in the origin and the other in the neighborhood of point (1;1)) separated by the straight line y= -x+1, and we show that can appear until two limit cycles depending of parameters variations. Finally, we examine a continuous piecewise linear system in R³ and we prove the existence of invariant cones and, through this structures, we determine some stable and unstable behavior.
Neste trabalho, consideramos classes de sistemas lineares por partes descontínuos no plano e contínuos no espaço. No plano, analisamos sistemas do tipo foco-foco (FF), parabólico-foco (PF) e parabólico-parabólico (PP) separados pela reta x = 0 e demonstramos que podem aparecer até dois ciclos limite, dependendo de variações de parâmetros. Também estudamos um sistema específico, linear por partes, com duas selas (uma sela fixa na origem e outra na vizinhança do ponto (1;1)) separadas pela reta y= -x+1 , e mostramos que podem aparecer até dois ciclos limite dependendo de variações de parâmetros. Por fim, examinamos um sistema linear por partes contínuo em R³ e demonstramos a existência de cones invariantes e, através destas estruturas, determinamos alguns comportamentos estáveis e instáveis.
Books on the topic "Piecewise linear map"
Levitt, N. Grassmannians and Gauss maps in piecewise-linear and piecewise-differentiable topology. Berlin: Springer-Verlag, 1989.
Find full textLevitt, Norman. Grassmannians and Gauss Maps in Piecewise-linear Topology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0084994.
Full textSpaces of PL Manifolds and Categories of Simple Maps. Princeton University Press, 2013.
Find full textBook chapters on the topic "Piecewise linear map"
Mira, Christian. "Embedding of a Dim1 Piecewise Continuous and Linear Leonov Map into a Dim2 Invertible Map." In Global Analysis of Dynamic Models in Economics and Finance, 337–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29503-4_13.
Full textAguirre, Carlos, Doris Campos, Pedro Pascual, and Eduardo Serrano. "A Model of Spiking-Bursting Neuronal Behavior Using a Piecewise Linear Two-Dimensional Map." In Computational Intelligence and Bioinspired Systems, 130–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494669_17.
Full textZhang, Xueping, Yawei Liu, Jiayao Wang, and Haohua Du. "A Novel Spatial Obstructed Distance by Dynamic Piecewise Linear Chaotic Map and Dynamic Nonlinear PSO." In Lecture Notes in Computer Science, 468–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13498-2_61.
Full textAguirre, Carlos, Doris Campos, Pedro Pascual, and Eduardo Serrano. "Neuronal Behavior with Sub-threshold Oscillations and Spiking/Bursting Activity Using a Piecewise Linear Two-Dimensional Map." In Artificial Neural Networks: Biological Inspirations – ICANN 2005, 103–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11550822_17.
Full textPumariño, A., J. A. Rodríguez, J. C. Tatjer, and E. Vigil. "Piecewise Linear Bidimensional Maps as Models of Return Maps for 3D Diffeomorphisms." In Progress and Challenges in Dynamical Systems, 351–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38830-9_22.
Full textTramontana, Fabio, and Frank Westerhoff. "One-Dimensional Discontinuous Piecewise-Linear Maps and the Dynamics of Financial Markets." In Global Analysis of Dynamic Models in Economics and Finance, 205–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29503-4_9.
Full textDing, Yiming, Hui Hu, and Yueli Yu. "On Hausdorff Dimension of Invariant Sets for a Class of Piecewise Linear Maps." In Difference Equations, Discrete Dynamical Systems and Applications, 67–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24747-2_5.
Full textGeronimo, J. S., and D. P. Hardin. "An Exact Formula for the Measure Dimensions Associated with a Class of Piecewise Linear Maps." In Constructive Approximation, 89–98. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-6886-9_5.
Full textLi, Shujun, Qi Li, Wenmin Li, Xuanqin Mou, and Yuanlong Cai. "Statistical Properties of Digital Piecewise Linear Chaotic Maps and Their Roles in Cryptography and Pseudo-Random Coding." In Cryptography and Coding, 205–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45325-3_19.
Full textWaldhausen, Friedhelm, Bjørn Jahren, and John Rognes. "The stable parametrized h-cobordism theorem." In Spaces of PL Manifolds and Categories of Simple Maps (AM-186). Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691157757.003.0002.
Full textConference papers on the topic "Piecewise linear map"
Metri, Rajanikant A., Mallareddy Mounica, and Bhooshan A. Rajpathak. "Characterization of 1D Linear Piecewise-Smooth Discontinuous Map." In 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC). IEEE, 2020. http://dx.doi.org/10.1109/stpec49749.2020.9297744.
Full textZhong, Yan-Ru, Hua-Yi Liu, Xi-Yan Sun, Ru-Shi Lan, and Xiao-Nan Luo. "Image Encryption Using 2D Sine-Piecewise Linear Chaotic Map." In 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2018. http://dx.doi.org/10.1109/icwapr.2018.8521240.
Full textHolm, Peter D., Börje Nilsson, Louis Fishman, Anders Karlsson, and Sven Nordebo. "Wide-Angle Shift-Map PE for a Piecewise Linear Terrain." In MATHEMATICAL MODELING OF WAVE PHENOMENA: 3rd Conference on Mathematical Modeling of Wave Phenomena, 20th Nordic Conference on Radio Science and Communications. AIP, 2009. http://dx.doi.org/10.1063/1.3117113.
Full textIvanov, Yu Yu, A. N. Romanyuk, A. Ia Kulyk, and O. V. Stukach. "A novel suboptimal piecewise-linear-log-MAP algorithm for turbo decoding." In 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2015. http://dx.doi.org/10.1109/sibcon.2015.7147195.
Full textwang, Yun-feng, Man-de Xie, and Ai-Ming Ji. "Research on a Piecewise Linear Chaotic Map and Its Cryptographical Application." In Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). IEEE, 2007. http://dx.doi.org/10.1109/fskd.2007.470.
Full textAddabbo, Tommaso, Massimo Alioto, Ada Fort, Santina Rocchi, and Valerio Vignoli. "Maximum-Period PRNGs Derived From A Piecewise Linear One-Dimensional Map." In 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.377903.
Full textWasi, Muhammad Arif Ali, and Susila Windarta. "Modified SNOW 3G: Stream cipher algorithm using piecewise linear chaotic map." In PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: Enhancing the Role of Mathematics in Interdisciplinary Research. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4940850.
Full textPeng, Jun, Shangzhu Jin, Yongguo Liu, Zhiming Yang, Mingying You, and Yangjun Pei. "A novel scheme for image encryption based on piecewise linear chaotic map." In 2008 IEEE Conference on Cybernetics and Intelligent Systems (CIS). IEEE, 2008. http://dx.doi.org/10.1109/iccis.2008.4670966.
Full textYoshioka, Daisaburo. "Hardware implementable S-box based on a discretized piecewise linear chaotic map." In 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/iwcmc.2013.6583714.
Full textRhouma, Rhouma, David Arroyo, and Safya Belghith. "A new color image cryptosystem based on a piecewise linear chaotic map." In 2009 6th International Multi-Conference on Systems, Signals and Devices (SSD). IEEE, 2009. http://dx.doi.org/10.1109/ssd.2009.4956666.
Full text