Academic literature on the topic 'Piezoelectric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piezoelectric"
Umer, Usama, Mustufa Haider Abidi, Syed Hammad Mian, Fahad Alasim, and Mohammed K. Aboudaif. "Effects of Silica Nanoparticles on the Piezoelectro-Elastic Response of PZT-7A–Polyimide Nanocomposites: Micromechanics Modeling Technique." Polymers 16, no. 20 (October 10, 2024): 2860. http://dx.doi.org/10.3390/polym16202860.
Full textWAN, YONGPING, and LIANGLIANG FAN. "MODELING THE PIEZOELECTRIC d33 COEFFICIENT OF THE CELLULAR PIEZOELECTRET FILM BY FINITE ELEMENT METHOD." Modern Physics Letters B 25, no. 31 (November 21, 2011): 2343–51. http://dx.doi.org/10.1142/s0217984911027558.
Full textZhang, He Bin, Zhong Hua Zhang, Ya Ding Jin, Hui Lun Jiang, Lin Jun Fan, and Xue Cai Yu. "Experimental Study on Tertiary Piezoelectric Effect of X-Cut Quartz Crystal." Key Engineering Materials 620 (August 2014): 134–39. http://dx.doi.org/10.4028/www.scientific.net/kem.620.134.
Full textZhang, Zhong Hua, Guang Ming Cheng, Jun Wu Kan, Ping Zeng, and Jian Ming Wen. "The Influence of Multiple Piezoelectric Effects on Elastic Coefficient of Piezoelectric Ceramics." Advanced Materials Research 305 (July 2011): 348–52. http://dx.doi.org/10.4028/www.scientific.net/amr.305.348.
Full textZengtao Yang and Jiashi Yang. "Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power Harvester." Journal of Intelligent Material Systems and Structures 20, no. 5 (November 28, 2008): 569–74. http://dx.doi.org/10.1177/1045389x08100042.
Full textVazquez, Irma Rocio, Zeynel Guler, and Nathan Jackson. "Enhancing Manufacturability of SU-8 Piezoelectric Composite Films for Microsystem Applications." Micromachines 15, no. 3 (March 14, 2024): 397. http://dx.doi.org/10.3390/mi15030397.
Full textPark, D. S., M. Hadad, L. M. Riemer, R. Ignatans, D. Spirito, V. Esposito, V. Tileli, et al. "Induced giant piezoelectricity in centrosymmetric oxides." Science 375, no. 6581 (February 11, 2022): 653–57. http://dx.doi.org/10.1126/science.abm7497.
Full textCHEN, YU, YUMEI WEN, and PING LI. "CHARACTERIZATIONS OF DISSIPATION FACTORS IN PIEZOELECTRIC CERAMIC DISCS UNDER STRESS AND TEMPERATURE." International Journal of Information Acquisition 01, no. 04 (December 2004): 327–35. http://dx.doi.org/10.1142/s0219878904000306.
Full textUchino, Kenji. "Piezoelectric Devices in the Sustainable Society." Sustainability in Environment 4, no. 4 (September 11, 2019): p181. http://dx.doi.org/10.22158/se.v4n4p181.
Full textWang, Hui, Xiaolin Wang, Matthew Wadsworth, Mohammad Faisal Ahmed, Zhe Liu, and Changchun Zeng. "Design, Fabrication, Structure Optimization and Pressure Sensing Demonstration of COC Piezoelectret Sensor and Sensor Array." Micromachines 13, no. 8 (July 26, 2022): 1177. http://dx.doi.org/10.3390/mi13081177.
Full textDissertations / Theses on the topic "Piezoelectric"
Yang, Xiaomei, and 楊笑梅. "Computational models for piezoelectrics and piezoelectric laminates." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31246217.
Full textFlynn, Anita M. "Piezoelectric Ultrasonic Micromotors." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/7086.
Full textBruna, Magali. "Piezoelectric ceramic devices." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615866.
Full textLeinvuo, J. "Flextensional piezoelectric motors." Thesis, Cranfield University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409514.
Full textBoestad, Albin, and Fabian Rudberg. "Piezoelectric Guitar Tuner." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296320.
Full textI följande kandidatexamensarbete kontrueras en automatisk gitarrstämmare med hjälp av en piezosensor, en stegmotor och en Arduino-mikrokontroller. E4-strängen på en akustisk gitarr användes som substitut för hur stämningsproceduren skulle kunna fungera för vilken annan gitarrsträng som helst. Noggrannheten samt stämningshastigheten undersöktes genom experiment. Genomsnittet av frekvensskillnaderna mellan de piezo-kalibrerade avläsningsvärdena och E4-strängens värden definierade måttet på noggrannhet. Hastigheten på strängstämningen beräknades i form av hur många gånger en sträng behövdes slås an innan strängen var inom ett godkänt intervall. Den automatiska gitarrstämmaren visade sig pålitiligt kunna stämma E4-strängen på ett försök inom ett noggrannhetsintervall på ±2Hz från det teoretiska värdet. Stämmaren kunde stämma inom +3.4 cents och−5.1 cents samt var var i genomsnitt −3.4 cents i från det teoretiska värdet.
Barham, Oliver M. "Microfabricated Bulk Piezoelectric Transformers." Thesis, University of Maryland, College Park, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10615552.
Full textPiezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton’s Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm
3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (± 0.1), efficiency of 33 (± 0.1)% and output power density of 51.3 (± 4.0)W cm
-3 (for output power of80 (± 6)mW) at 1M? load, for an input voltage range of 3V-6V (± one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm
3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application
Zhu, Zangyuan. "Lead-free piezoelectric ceramics." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581971.
Full textDe, Poumeyrol Benjamin. "Characterization of piezoelectric paint." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273485.
Full textHack, Thorsten. "Stick-slip piezoelectric actuators." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624403.
Full textLai, Ming-Liang. "Developing piezoelectric biosensing methods." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6109/.
Full textBooks on the topic "Piezoelectric"
Tzou, Hornsen. Piezoelectric Shells. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1258-1.
Full textBhalla, Suresh, Sumedha Moharana, Visalakshi Talakokula, and Naveet Kaur. Piezoelectric Materials. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119265139.
Full textTzou, H. S. Piezoelectric Shells. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8.
Full textJanshoff, Andreas, and Claudia Steinem, eds. Piezoelectric Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-36568-6.
Full textGautschi, Gustav. Piezoelectric Sensorics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04732-3.
Full textClaudia, Steinem, and Janshoff Andreas, eds. Piezoelectric sensors. Berlin: Springer, 2006.
Find full textLieberzeit, Peter, ed. Piezoelectric Sensors. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-53785-1.
Full textSegel, Joshua E. Piezoelectric actuators. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textSingh, N. B., and Dev Kumar Mahato. Piezoelectric Materials. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978.
Full textBook chapters on the topic "Piezoelectric"
Gautschi, Gustav. "Piezoelectric Sensors." In Piezoelectric Sensorics, 73–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04732-3_5.
Full textTzou, H. S. "Introduction." In Piezoelectric Shells, 1–12. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_1.
Full textTzou, H. S. "Finite Element Formulation and Analyses." In Piezoelectric Shells, 405–56. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_10.
Full textTzou, H. S. "Piezoelectric Shell Vibration Theory." In Piezoelectric Shells, 13–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_2.
Full textTzou, H. S. "Common Piezoelectric Continua and Active Piezoelectric Structures." In Piezoelectric Shells, 63–114. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_3.
Full textTzou, H. S. "Distributed Sensing and Control of Elastic Shells." In Piezoelectric Shells, 115–54. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_4.
Full textTzou, H. S. "Multi-Layered Shell Actuators." In Piezoelectric Shells, 155–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_5.
Full textTzou, H. S. "Boundary Control of Beams." In Piezoelectric Shells, 187–226. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_6.
Full textTzou, H. S. "Distributed Control of Plates with Segmented Sensors and Actuators." In Piezoelectric Shells, 227–82. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_7.
Full textTzou, H. S. "Convolving Shell Sensors and Actuators Applied to Rings." In Piezoelectric Shells, 283–336. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_8.
Full textConference papers on the topic "Piezoelectric"
Shen, Xin, Chunhua Zhou, and Yipeng Wu. "Synchronous switches based piezoelectric shunting circuits and piezoelectric energy control." In International Conference on New Materials, Machinery, and Vehicle Engineering 2024, edited by Jinyang Xu and J. Paulo Davim, 26. SPIE, 2024. http://dx.doi.org/10.1117/12.3054962.
Full textCross, Charles J., and Sanford Fleeter. "Shunted Piezoelectric Control of Airfoil Vibrations." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-385.
Full textCollinger, J. C., W. C. Messner, and J. A. Wickert. "Vibration Control With Magnetically Mounted Piezoelectric Actuators." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67369.
Full textBahrami, Hassan, and H. S. Tzou. "Design and Analysis of a Precision Multi-DOF Placement Device." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0172.
Full textYang, Lin, Qing-jun Ding, and Chun-sheng Zhao. "Piezoelectric drill based on converse piezoelectric effect." In 2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2008. http://dx.doi.org/10.1109/spawda.2008.4775766.
Full textBahrami, Hassan, and H. S. Tzou. "Precision Placement Analysis of a New Multi-DOF Piezoelectric End-Effector via Finite Elements." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3945.
Full textJudy, D. C., J. S. Pulskamp, R. G. Polcawich, and L. Currano. "Piezoelectric Nanoswitch." In 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2009. http://dx.doi.org/10.1109/memsys.2009.4805451.
Full textHohner, M., and S. Manhart. "Piezoelectric Scanners." In Hague International Symposium, edited by Hanspeter Lutz and Georges Otrio. SPIE, 1987. http://dx.doi.org/10.1117/12.941544.
Full textBhuvanesh, M., S. Gokul, M. Manirathinam, M. V. Molykutty, and G. Puthilibai. "Piezoelectric Pavement." In 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE, 2020. http://dx.doi.org/10.1109/icpects49113.2020.9337013.
Full textHusak, M., P. Martinek, V. Janicek, J. Novak, A. Boura, and J. Foit. "Piezoelectric Microgenerator." In 2020 13th International Conference on Advanced Semiconductor Devices And Microsystems (ASDAM). IEEE, 2020. http://dx.doi.org/10.1109/asdam50306.2020.9393859.
Full textReports on the topic "Piezoelectric"
Oates, William S., and Farrukh Alvi. Piezoelectric Pulsed Microjets. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada546107.
Full textDouglas, James Kenneth, and Matt Eichenfield. Piezoelectric Nano-Optomechanical Systems. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1505466.
Full textReke, Michael, Sebastian Grobosch, and Kai Niegetiet. The Piezoelectric Controlled Carburetor. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0528.
Full textCreighton, Steven, Peter W. Chung, and John D. Clayton. Multiscale Modeling of Piezoelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada494112.
Full textChow, Weng Wah, and Sebastian Maciej Wieczorek. Piezoelectric field in strained GaAs. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/923072.
Full textBailey, Thomas, Alexander Gruzen, and Paul Madden. RCS/Piezoelectric Distributed Actuator Study. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada201276.
Full textGazonas, George A., Raymond A. Wildman, and David A. Hopkins. Elastodynamic Impact into Piezoelectric Media. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada608898.
Full textShrout, Thomas R. Resource for Piezoelectric Single Crystals. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada363144.
Full textJohnson, Trevor Todd. Piezoelectric Load Cell Literature Review. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1514903.
Full textSuleiman, Ahmad, Marie Pender, and George Guilbault. Passive Piezoelectric Hydrogen Chloride Monitor. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada585060.
Full text