Academic literature on the topic 'Piezoelectric Bimorph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric Bimorph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piezoelectric Bimorph"
Hu, Kai-ming, Hua Li, and Li-Hua Wen. "Experimental study of axial-compressed macro-fiber composite bimorph with multi-layer parallel actuators for large deformation actuation." Journal of Intelligent Material Systems and Structures 31, no. 8 (March 13, 2020): 1101–10. http://dx.doi.org/10.1177/1045389x20910262.
Full textZhang, Hao, and Liang Jun Xu. "Analysis of the Acceleration Sensor Effect of Castellated Triple Layer Piezoelectric Bimorph." Applied Mechanics and Materials 614 (September 2014): 84–87. http://dx.doi.org/10.4028/www.scientific.net/amm.614.84.
Full textLin, Yu-Chih, Yu-Hsi Huang, and Kwen-Wei Chu. "Experimental and Numerical Investigation of Resonance Characteristics of Novel Pumping Element Driven by Two Piezoelectric Bimorphs." Applied Sciences 9, no. 6 (March 24, 2019): 1234. http://dx.doi.org/10.3390/app9061234.
Full textGrzybek, Dariusz, and Piotr Micek. "Impact of Series and Parallel Connection of Macro Fiber Composite Patches in Piezoelectric Harvester on Energy Storage." Energies 14, no. 9 (April 22, 2021): 2379. http://dx.doi.org/10.3390/en14092379.
Full textZeng, Ping, Li’an Li, Jingshi Dong, Guangming Cheng, Junwu Kan, and Feng Xu. "Structure design and experimental study on single-bimorph double-acting check-valve piezoelectric pump." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, no. 14 (July 16, 2015): 2339–44. http://dx.doi.org/10.1177/0954406215596357.
Full textYan, Shao Ze, Fu Xing Zhang, and Shi Zhu Wen. "Electro-Mechanical Coupling Performances of a Piezoelectric Bimorph." Key Engineering Materials 336-338 (April 2007): 327–30. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.327.
Full textAlcock, Simon G., Ioana-Theodora Nistea, Riccardo Signorato, and Kawal Sawhney. "Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors." Journal of Synchrotron Radiation 26, no. 1 (January 1, 2019): 36–44. http://dx.doi.org/10.1107/s1600577518015953.
Full textAli, Ahsan, Riffat Asim Pasha, Hassan Elahi, Muhammad Abdullah Sheeraz, Saima Bibi, Zain Ul Hassan, Marco Eugeni, and Paolo Gaudenzi. "Investigation of Deformation in Bimorph Piezoelectric Actuator: Analytical, Numerical and Experimental Approach." Integrated Ferroelectrics 201, no. 1 (September 2, 2019): 94–109. http://dx.doi.org/10.1080/10584587.2019.1668694.
Full textHuang, Fang Sheng, Zhi Hua Feng, Yu Ting Ma, Qiao Sheng Pan, Lian Sheng Zhang, Yong Bin Liu, and Liang Guo He. "High-frequency performance for a spiral-shaped piezoelectric bimorph." Modern Physics Letters B 32, no. 10 (April 10, 2018): 1850111. http://dx.doi.org/10.1142/s0217984918501117.
Full textAbramovich, Haim, and Idan Har-nes. "Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth." Materials 11, no. 7 (July 19, 2018): 1243. http://dx.doi.org/10.3390/ma11071243.
Full textDissertations / Theses on the topic "Piezoelectric Bimorph"
Fabbri, Davide. "Electrically tunable piezoelectric bimorph cantilever for energy harvesting." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11164/.
Full textOwens, Sam. "Thick-film piezoelectric bimorph actuators for MEMS devices." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/7018.
Full textWilhelms, John, and Marcus Trulsson. "Open Loop Control of Piezoelectric Cantilever Speaker." Thesis, Linköpings universitet, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122363.
Full textOhka, Masahiro, Yasuhiro Sawamoto, Shiho Matsukawa, Tetsu Miyaoka, and Yasunaga Mitsuya. "A Two-axis Bimorph Piezoelectric Actuator for Pressure and Slippage Force Presentation." IEEE, 2006. http://hdl.handle.net/2237/9501.
Full textHradil, Aleš. "Návrh mikroaktuátoru s využitím SMART materiálů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229700.
Full textCicogna, Thiago Rodrigo. "Identificação de matrizes de função de resposta em freqüência multidirecionais em estruturas complexas." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-19012011-142931/.
Full textThe present work aims to perform the development of an attractive approach for accurate measurement of angular frequency response functions (AFRFs). It uses bimorph piezoceramic patches to measure the structure\'s local curvature through the measurement of the electric potential induced by the extension and compression of the patch\'s top and bottom stripes, respectively. From this curvature, rotation can be obtained directly by several interpolation techniques (single polynomial, modes basis). Theoretical modeling of the vibration incorporating piezoelectric bimorph sensor is presented and equations governing the dynamics for one-dimensional structures, like a beam, and for two-dimensional structures, like a plate, are derived for isotropic structures. Finite element model for the dynamic analysis were proposed to evaluate bimorphs patches applied to the measurement of angular FRFs. Numerical and experimental results are presented considering a cantilever beam and numerical results for a simply supported plate as tested structured. Also, in this work, a genetic algorithm was used as an adaptive heuristic search algorithm for optimal placement and sizing of the bimorph sensor into beam like structures.
Palosaari, J. (Jaakko). "Energy harvesting from walking using piezoelectric cymbal and diaphragm type structures." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526217130.
Full textTiivistelmä Monet elektroniset laitteet ympäröivät meitä jokapäiväisessä elämässä. Ne tarkkailevat auton toimintaa tai liikennettä ja toiset toimivat aina mukana kulkevissa kannettavissa laitteissa. Töissä ne valvovat valmistusprosesseja tai varoittavat työntekijöitä vaarallisista työolosuhteista. Kaikki nämä laitteet tarvitsevat sähköä toimiakseen. Pienitehoisten elektronisten laitteiden eksponentiaalinen kasvu teollisuudessa, terveyssektorilla, puolustusteollisuudessa, kulkuneuvoissa sekä kannettavassa kulutuselektroniikassa on johtanut suureen tarpeeseen kehittää järjestelmiin integroituja energialähteitä. Monia energiankeräystekniikoita on kehitetty toimimaan elektronisten laitteiden läheisyydessä. Aurinkopaneelit ja magneettiset energiankeräysmenetelmät ovat yleisimpiä ratkaisuja, jos olosuhteet antavat siihen mahdollisuuden. Pietsosähköinen energiankeräys on uudempi tekniikka, joka on herättänyt kasvavaa huomiota tutkimusyhteisössä sekä teollisuudessa. Pietsosähköisen materiaalin avulla mekaaninen energia voidaan muuntaa suoraan sähköiseksi energiaksi. Tässä tekniikassa kineettinen energia tulee analysoida tarkasti mekaniikka suunnittelua varten, jotta se saadaan kohdistettua tehokkaasti pietsosähköiseen materiaaliin. Lisäksi mekaniikan tulee suojata materiaalia voimilta, jotka voivat johtaa murtumiin. Näistä vaatimuksista johtuen jokainen ulkoinen energialähde vaatii yleensä yksilöllisen energiankeräysrakenteen. Tämä väitöstyö keskittyy pietsosähköisten keraamien hyödyntämiseen energiankeräyksessä matalataajuisista mekaanisista voimista. Tarkoituksena oli suunnitella, valmistaa, mitata ja asentaa rakenteita, jotka kestävät kantapäähän kohdistuvia voimia kävelyn ja juoksun aikana sekä maksimoida talteen saatava energia ja hyötysuhde. Kaksi erilaista rakennetta suunniteltiin, valmistettiin ja optimoitiin energiankeräystä varten. Kantapäähän kohdistuva kineettinen energia analysoitiin mallinnusohjelmistolla ja mittaamalla sähköinen vaste energiakeräys rakenteesta. Tuloksien avulla suunniteltiin kävelyprofiilia imitoiva mekaaninen männän liike, jonka avulla tutkittiin kohdistettavan voiman nopeuden, vaiheen ja suuruuden vaikutusta energiankeräyksen hyötysuhteeseen ja saatavaan tehoon. Viimeisenä energiankeräysrakenteen toimivuutta testattiin oikeassa ympäristössä asentamalla se juoksukenkään. Kehitetyllä pietsosähköisellä energiakeräimellä saavutettiin korkeimmat raportoidut energiatiheydet käytetyllä taajuusalueella
Mane, Poorna. "Experimental Design and Analysis of Piezoelectric Synthetic Jets in Quiescent Air." VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/768.
Full textHan, Younghee. "A NEW PIEZOELECTRIC MICROACTUATOR WITH TRANSVERSE AND LATERAL CONTROL OF HEAD POSITIONING SYSTEMS FOR HIGH DENSITY HARD DISK DRIVES." UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_theses/349.
Full textEvans, Joshua L. "SMALL SATELLITE NONCOMMUTATIVE ROTATION SEQUENCE ATTITUDE CONTROL USING PIEZOELECTRIC ACTUATORS." UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/91.
Full textBook chapters on the topic "Piezoelectric Bimorph"
Niu, Meng-Nian, and Eun Sok Kim. "Bimorph Piezoelectric Acoustic Transducer." In Transducers ’01 Eurosensors XV, 110–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_25.
Full textVaccarone, R., and F. Möller. "Cryogenic Behavior of Piezoelectric Bimorph Actuators." In Advances in Cryogenic Engineering Materials, 275–82. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4293-3_35.
Full textBazilo, Constantine. "Modelling of Bimorph Piezoelectric Elements for Biomedical Devices." In Advances in Intelligent Systems and Computing, 151–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39162-1_14.
Full textYan, Shao Ze, Fu Xing Zhang, and Shi Zhu Wen. "Electro-Mechanical Coupling Performances of a Piezoelectric Bimorph." In Key Engineering Materials, 327–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.327.
Full textYi, Seung Hwan, Man Soon Yoon, and Soon Chul Ur. "Piezoelectric Bimorph Microphone with Low Stress Parylene Diaphragm." In Solid State Phenomena, 161–64. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.161.
Full textMallouli, Marwa, and Mnaouar Chouchane. "Analytical Modeling and Analysis of a Bimorph Piezoelectric Energy Harvester." In Design and Modeling of Mechanical Systems—III, 1179–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_116.
Full textAsthana, Prateek, Apoorva Dwivedi, and Gargi Khanna. "Equivalent Circuit Modelling for Unimorph and Bimorph Piezoelectric Energy Harvester." In Communications in Computer and Information Science, 39–49. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3143-5_4.
Full textDwivedy, S. K., Anvesh K. Reddy, and Anshul Garg. "Dynamic Analysis of Parametrically Excited Piezoelectric Bimorph Beam for Energy Harvesting." In Mechanisms and Machine Science, 363–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09918-7_32.
Full textAloui, Rabie, Walid Larbi, and Mnaouar Chouchane. "Finite Element Modeling and Analysis of a Bimorph Piezoelectric Energy Harvester." In Design and Modeling of Mechanical Systems—III, 1205–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_118.
Full textA/L Sarbjeet Singh, Sanjeef Singh, Sew Sun Tiang, Wei Hong Lim, Kah Hou Teng, and Chin Hong Wong. "Simulation Studies on Bimorph and Unimorph PZT Piezoelectric Transducer for Energy Harvesting Application." In Enabling Industry 4.0 through Advances in Mechatronics, 299–308. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2095-0_26.
Full textConference papers on the topic "Piezoelectric Bimorph"
Lau, C. W. H., and C. W. Lim. "Free vibration of piezoelectric bimorph actuators." In 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2009). IEEE, 2009. http://dx.doi.org/10.1109/spawda.2009.5428901.
Full textJonghoo Paik, Youngjin Lee, Changil Kim, and Sahn Nahm. "Piezoelectric power generation using bimorph actuator." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693946.
Full textBurke, Shawn E., and James E. Hubbard, Jr. "Shape control of piezoelectric bimorph mirrors." In San Diego, '91, San Diego, CA, edited by Donald C. O'Shea. SPIE, 1991. http://dx.doi.org/10.1117/12.48266.
Full textSharma, Divyanshi, Garima Bhardwaj, Sandhya Kattayat, Harish Kumar Sublania, B. L. Choudhary, and P. A. Alvi. "Simulation of a piezoelectric bimorph cantilever." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS FOR ENERGY AND ENVIRONMENT 2020. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136097.
Full textHudnut, Steven W., Abdulhakim Almajid, and Minoru Taya. "Functionally gradient piezoelectric bimorph-type actuator." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by Christopher S. Lynch. SPIE, 2000. http://dx.doi.org/10.1117/12.388222.
Full textSherrit, Stewart, Hyeong Jae Lee, Phillip Walkemeyer, Jennifer Hasenoehrl, Jeffrey L. Hall, Tim Colonius, Luis Phillipe Tosi, et al. "Flow energy piezoelectric bimorph nozzle harvester." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Wei-Hsin Liao. SPIE, 2014. http://dx.doi.org/10.1117/12.2045191.
Full textMo, Changki, Steve Jordan, and William W. Clark. "Bimorph Piezoelectric Cymbal Design in Energy Harvesting." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7946.
Full textSathya, P. "Bimorph Piezoelectric Energy Harvester at Low Frequency." In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE, 2020. http://dx.doi.org/10.1109/ic-etite47903.2020.202.
Full textYang, Chaoxiang, Bohao Hu, Liangyu Lu, Yaxin Wang, Yao Cai, Yan Liu, Wenjuan Liu, and Chengliang Sun. "Bimorph Piezoelectric MEMS Microphone with Tractive Structure." In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9957653.
Full textKim, Jungsoon, Moojoon Kim, and Kanglyeol Ha. "Analysis of exponentially tapered piezoelectric bimorph actuator." In 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441528.
Full text