To see the other types of publications on this topic, follow the link: Piezoelectric ceramic materials(PZT).

Dissertations / Theses on the topic 'Piezoelectric ceramic materials(PZT)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 39 dissertations / theses for your research on the topic 'Piezoelectric ceramic materials(PZT).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stoll, William Allard III. "Nonlinear constitutive behavior of PZT." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santos, Marcello Pojucan Magaldi. "Preparação e caracterização de cerâmicas piezoelétricas do tipo PZT co-dopadas com nióbio e ferro." Universidade do Estado do Rio de Janeiro, 2009. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1310.

Full text
Abstract:
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro
As cerâmicas piesoelétricas estudadas neste trabalho (Pb1,03Zr0,53Ti0,47O3, Pb1,03Zr0,525Nb0,05Ti0,465Fe0,005O3, Pb1,03Zr0,515Nb0,015Ti0,465Fe0,005O3, Pb1,03Zr0,525Nb0,005Ti0,455Fe0,015O3 e Pb1,03Zr0,515Nb0,015Ti0,455Fe0,015O3) foram sinterizadas a 1200oC e 1250oC por 3,5 h a fim de que suas propriedades piesoelétricas fossem investigadas. Nas composições dos PZT obtidas, a matriz e os dopantes empregaram óxidos como matérias primas. As misturas dos óxidos precursores foram calcinadas a 850oC por 3,5 h para obtenção da fase PZT. Os precursores, os pós e os corpos de prova de PZT foram caracterizados quanto às microestruturas, densidades e propriedades físicas. Após a conformação dos pós e a sinterização, os materiais cerâmicos foram polarizados para caracterização de suas propriedades piesoelétricas através de um impedancímetro na faixa de freqüência de 100 KHz a 200 KHz. Os resultados de dispersão de laser dos precursores revelaram aglomeração do óxido de chumbo e óxido de zircônio. As composições calcinadas apresentaram tamanho de partícula na faixa de 0,44 μm a 0,63 μm. As análises de densidade por método de Arquimedes indicaram uma boa densificação dos corpos de prova sinterizados e pouca influência da temperatura de sinterização com uma escala de valores de 95,73 a 97,65% da densidade teórica. As análises de microscopia eletrônica de varredura revelaram que os sinterizados contendo concentrações diferentes de dopantes exibem uma correlação do tipo e teor de dopante com a natureza da fratura, sendo transgranular, quando dopante ferro for predominante e intergranular, quando o dopante Nb for predominante. Também, o aumento da temperatura de sinterização resultou em fratura transgranular independente do tipo e da concentração de dopante, exceto para baixo teor de dopante da composição equimolar, cujos resultados não foram consistentes com a literatura sobre o material. No que diz respeito às propriedades piesoelétricas, revelou-se que a combinação da variação da composição com a temperatura foi favorável para o aumento dos valores da constante dielétrica da formulação equimolar com maior percentual de dopantes. Já o efeito da temperatura com a composição surtiu um efeito muito negativo para os valores de fator de qualidade mecânica da formulação dopada com mais ferro. Para os valores de constante de freqüência da formulação com maior percentagem de nióbio, o efeito da temperatura com a composição gerou um efeito positivo.
The piezoelectric ceramics studied in this work, Pb1.03Zr0.53Ti0.47O3, Pb1.03Zr0.525Nb0.05Ti0.465Fe0.005O3, Pb1.03Zr0.515Nb0.015Ti0.465Fe0.005O3, Pb1.03Zr0.525Nb0.005Ti0.455Fe0.015O3 and Pb1.03Zr0.515Nb0.015Ti0.455Fe0.015O3, were all of them sintered between 1200oC and 1250oC for 3.5h. After that, their piezoelectric properties were investigated. In the present work, oxides were used as raw material in both, matrices and dopants. The mixture of the precursor oxides were calcinaned at 850oC during 3.5h for obtaining the PZT phase. The precursor oxides, the powders and the PZT samples went through characterization tests in order to have their microstructures, densities and physical properties correctly determined. After the powders had been conformed and performed the sinterization process, the PZT ceramics were polarized and their piezoelectric properties determined by using an impedancemeter working in the frequency from 100 KHz to 200 KHz. The obtained results from laser dispersion had revealed agglomeration of lead and zirconium oxide. The calcined samples presented particle sizes from 0.44 μm to 0.63 μm. The density analyses using the Archimedes method indicated a good densification of the sintered samples and a weak influence of the sintering temperature on the obtained density values, whose values ranged from 95.73 to 97.65 % of the theoretical density value. Analysis performed using the scanning electron microscopy technique (MEV) revealed that the sintered samples had showed a correlation between the type and concentration of the dopant with their fracture mode, which were transgranular when Fe prevails over the Nb as dopant, and intergranular, when is the Nb that prevails over the Fe as dopant. By the other side, from increasing the sintering temperature resulted transgranular fractures, independently of which type and content of dopant had been used, except for the equimolar case with relatively low content of dopant, whose results were not consistent with the literature related to this material. About the piezoelectric properties, the results had showed that the combination of the dopant composition with the sintering temperature had brought better values of dielectric constant for the equimolar formulation with more content of dopant. Relating to the mechanical quality factor, from the combination of the dopant composition with the sintering temperature had decreased the factor when Fe prevails over Nb and increased the frequency factor when is the Nb that prevails over the Fe.
APA, Harvard, Vancouver, ISO, and other styles
3

Gotmare, Sunil W. "THERMAL DEGRADATION AND AGING OF HIGH TEMPERATURE PIEZOELECTRIC CERAMICS." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/564.

Full text
Abstract:
Piezoelectric materials have numerous applications like high temperature accelerometers, pressure, flow and NDT transducers, acoustic emission, ultrasonic cleaning, welding, high voltage generators, medical therapy etc. The commonly used piezoelectric material, PZT continues to dominate the commercial market for piezoelectric actuators applications. The primary limitations of PZT are the lower Curie temperature TC <390oC and rapid thermal degradation avobe 200oC. Continuing efforts are focused on the development of piezoelectric materials suitable for high temperature applications >200oC. These materials will be very useful for making sensors for space exploration, oil and geothermal well drilling tools, oil & gas pipeline health monitoring and automotive smart brakes. Recently material based on (1-x)Bi(Me)O3-xPbTiO3 developed with TC~460oC, and d33~500 pC/N compared to TC~390oC and d33~220 pC/N of pure PZT. Enhanced room temperature properties and higher transition temperature makes this material interesting for further investigation as a high temperature piezoelectric material. Reliability of technological piezoelectric devices is a major concern for their applications. Many piezoelectric materials undergo a process of aging, associated with a spontaneous decrease of electromechanical properties. In the current work thermal degradation and aging behavior of high temperature piezoelectric material BSPT was evaluated and compared with the commonly used PZT.
APA, Harvard, Vancouver, ISO, and other styles
4

Karastamatis, Thomas. "Measuring the R-curves of lead zirconate titanate (PZT) from a surface crack in flexure (SCF)." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robbins, Jesse. "An Investigation into the Cyclic Electric Fatigue of Ferroelectric Ceramics as Actuators: High Temperature and Low Pressure." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1240861885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Mubing. "Adaptive-passive and active control of vibration and wave propagation in cylindrical shells using smart materials." Akron, OH : University of Akron, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1123211712.

Full text
Abstract:
Dissertation (Ph.D.)--University of Akron, Dept. of Mechanical Engineering, 2005.
"August, 2005." Title from electronic dissertation title page (viewed 12/27/2005) Advisor, Pizhong Qiao; Co-Advisor, Gangbing Song; Committee members, Wieslaw K. Binienda, Kevin L. Kreider, Paul C. K. Lam, Dane Quinn; Department Chair, Celal Batur, Wieslaw K. Binienda; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Droescher, Roberta Elisabeth. "Obtenção e caracterização microestrutural e elétrica de cerâmicas PZT-PMN." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/17559.

Full text
Abstract:
Este trabalho investigou o sistema (1 - x )PZT - x PMN, avaliando a influência da composição química e dos parâmetros de sinterização na microestrutura e propriedades elétricas dos corpos cerâmicos obtidos pelo método convencional de mistura de óxidos. Os óxidos usados foram o Nb2O5, ZrO2, TiO2, PbO e MgCO3, cominuídos e homogeneizados em moinho de bolas, por 3 horas. Para o 0,65PZT - 0,35PMN, utilizou-se 28,58% de Nb2O5, 38,93% de ZrO2, 23,29% de TiO2 e 9,2% de MgCO3; para o 0,75PZT-0,25PMN, utilizou-se 20,9% de Nb2O5, 45,34% de ZrO2, 27,13% de TiO2 e 6,62% de MgCO3 e para o 0,85PZT-0,15PMN, usa-se 12,71% de Nb2O5, 52,09% de ZrO2, 31,16% de TiO2 e 4,04% de MgCO3. O pó obtido foi submetido a calcinação a 1200°C por 4 h e, então, acrescentado PbO com um excesso de 2% em massa.à mistura, a qual foi submetida a uma nova calcinação a 800°C durante 2 horas. O pó resultante da calcinação foi conformado por prensagem, utilizando uma prensa uniaxial a 190 MPa, na forma de discos medindo 10 mm de diâmetro e 1,5 mm de espessura. A curva de queima dos corpos cerâmicos consistiu em um novo patamar a 500°C por 4h (e/ou a 800°C por 2h) e outro consecutivo a 1200°C por 4h. As amostras foram caracterizadas pela sua densidade e porosidade aparente (método de Arquimedes), composição de fases (por difração de raio-X), Microscopia Eletrônica de Varredura (MEV) e caracterização elétrica (constante dielétrica e capacitância). Os corpos cerâmicos correspondentes à composição 0,75PZT-0,25PMN alcançaram a maior densidade (7,09 ± 0,18 g/cm³) quando calcinados sucessivamente a 500°C e a 800°C, com os maiores valores de capacitância (210 pF a 200 KHz) e de constante dielétrica (1000 na frequência de 1 KHz), com menor evidência de formação de pirocloro e maior de perovskita. Os valores de constante dielétrica encontrados estão dentro do esperado para materiais cerâmicos piezoelétricos do tipo PZT - PMN, aproximadamente 1000 para freqüências de 1KHz.
This work investigated the system (1 - x )PZT - x PMN, evaluating the influence of the chemical composition and the sintering parameters on the microstructure and the electric properties of ceramic bodies obtained by the conventional method of mixture of oxides. The used oxides were Nb2O5, ZrO2, TiO2, PbO e MgCO3, squeezed and homogenized in mill of balls, for 3 hours. For the 0.65PZT-0.35PMN, it was used 28.58% of Nb2O5, 38.93% of ZrO2, 23.29% of TiO2 and 9.2% of MgCO3; for the 0.75PZT-0.25PMN, it was used 20.9% of Nb2O5, 45.34% of ZrO2, 27.13% of TiO2 and 6.62% of MgCO3 and for the 0.85PZT-0.15PMN, it is used 12.71% of Nb2O5, 52.09% of ZrO2, 31.16% of TiO2 and 4.04% of MgCO3. The obtained powder was submitted the calcination for 1200°C for 4 h and, then, increased PbO with an excess of 2% in mass, which was submitted to a new calcination to 800°C for 2 hours. The calcinated powder was conformed by pressing, using a uniaxial press to 190 MPa, in the form of disks measuring a diameter of 10mm and 1.5 mm of thickness. The curve of the burning of the ceramic bodies consisted in a new calcination to 500°C for 4h (and/or to 800°C for 2h) and other consecutive to 1200°C for 4h. The samples were characterized by density and apparent porosity (Method of Arquimedes), composition of phases (by X - rays diffraction), Scanning Electric Microstructure (SEM) and electrical properties characterization (dielectric constant and capacitance). The ceramic bodies corresponding to the composition 0.75PZT-0.25PMN reached the largest density (7.09 ± 0.18 g/cm³) when calcined successively to 500°C and 800°C, with the largest values of capacitance (210 pF to 200 KHz) and dielectric constant (1000 in the frequency of 1 KHz), with smaller evidence of pyrochlore formation and larger of perovskte. The values of dielectric constant found are inside of the expected for the piezoelectric ceramics of the type PZT- PMN, approximately 1000 by frequencies of 1KHz.
APA, Harvard, Vancouver, ISO, and other styles
8

Feng, Jian-Huei. "Colloidal processing, tape casting and sintering of PLZT for development of piezoceramic/polymer interlayered composites /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Zuyan Shih Wan Y. Shih Wei-Heng. "Synthesis, fabrication, and characterization of self-exciting, self-sensing PZT/SiO2 piezoelectric micro-cantilever sensors /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Hongyu Shih Wei-Heng Shih Wan Y. "Colloidal processing of PMN-PT thick films for piezoelectric sensor applications /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Robinson, Michelle Christina. "Microstructural and geometric effects on the piezoelectric performance of PZT MEMS." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Fall2007/m_robinson_091307.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Su, Bo. "Novel fabrication processing for improved lead zirconate titanate (PZT) ferroelectric ceramic materials." Thesis, University of Birmingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.668338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dong, Biqin. "Cement-based piezoelectric ceramic composites for sensor applications in civil engineering /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20DONG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Camara, Fernando Henrique de Oliveira [UNESP]. "Análise de uma piezoestrutura (PZT) multifrequência para geração, extração e armazenamento de energia." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/94507.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-12-14Bitstream added on 2014-06-13T20:16:16Z : No. of bitstreams: 1 camara_fho_me_ilha.pdf: 1061097 bytes, checksum: dd65d1481cdc65c74077f24ca53e3b77 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A utilização de materiais piezelétricos para transformação de energia mecânica proveniente das vibrações em energia elétrica tem aumentado na última década para tentar suprir a necessidade por fontes alternativas de energia na alimentação de sistemas de monitoramento da condição estrutural (SHM) e dispositivos de aeronaves não tripuladas, tornando estes dispositivos autônomos. Como a energia produzida através da piezoestrutura não é suficiente para alimentar os dispositivos eletrônicos diretamente, técnicas de extração e armazenamento são utilizadas para que a energia produzida seja acumulada até um nível utilizável. Neste sentido, este trabalho apresenta um estudo sobre uma configuração de piezoestrutura capaz de produzir um alto nível de energia mesmo que a frequência de excitação apresente variações. A piezoestrutura proposta é do tipo multifrequência aumentando a largura de banda de operação e podendo produzir um alto nível de energia mesmo que a frequência de excitação apresente alterações. A piezoestrutura multifrequência foi modelada por elementos finitos através do programa ANSYS© e posteriormente comparada com resultados experimentais. Em seguida, a tensão produzida foi extraída através dos circuitos retificador de onda completa em ponte e do dobrador de tensão buscando avaliar o desempenho de ambos na extração da energia produzida para armazenamento em um supercapacitor. Finalmente, a energia armazenada no supercapacitor foi utilizada para alimentar um sistema de monitoramento da temperatura de um ambiente de modo que o sistema passe a operar como um sistema autônomo
The use of piezoelectric materials to transform mechanical energy from the vibrations into electrical energy has increased in the last decade trying to meet the need for alternative sources of energy to power up SHM systems and Unmanned Air Vehicle devices, making these standalone devices. This work presents a study on a configuration of a piezostructure being able to produce a higher energy even if the excitation frequency undergoes changes, and then evaluate two electronic circuit topology as simple interface for extracting the maximum energy produced and store it in a supercapacitor to power a sensor system that monitors the temperature in a room. Initially a brief review of the basics and fundamentals of energy harvesting was presented for better understanding of the development of this work. The proposal is a multifrequency piezostructure type that increases the bandwidth of operation and could produce a high energy value even if the excitation frequency undergoes alterations. The multifrequency piezostructure was modeled by finite element software ANSYS© and then compared with experimental results showing a good correlation between the numerical and experimental models. Then, a parametric study was conducted to determine which geometric parameter from the piezostruture should be varied so that the piezo-beams had their natural frequencies within the specified operating range. The voltage produced was extracted through two types of circuits (full wave rectifier and voltage doubler) trying to evaluate which one is able to extract the maximum possible energy produced for storage in a supercapacitor. Finally, the energy stored in the supercapacitor was used to power a system for monitoring the temperature of an environment so that the system operates as a standalone system
APA, Harvard, Vancouver, ISO, and other styles
15

Camara, Fernando Henrique de Oliveira. "Análise de uma piezoestrutura (PZT) multifrequência para geração, extração e armazenamento de energia /." Ilha Solteira, 2012. http://hdl.handle.net/11449/94507.

Full text
Abstract:
Orientador: João Antônio Pereira
Banca: Samuel da Silva
Banca: Adailton Silva Borges
Resumo: A utilização de materiais piezelétricos para transformação de energia mecânica proveniente das vibrações em energia elétrica tem aumentado na última década para tentar suprir a necessidade por fontes alternativas de energia na alimentação de sistemas de monitoramento da condição estrutural (SHM) e dispositivos de aeronaves não tripuladas, tornando estes dispositivos autônomos. Como a energia produzida através da piezoestrutura não é suficiente para alimentar os dispositivos eletrônicos diretamente, técnicas de extração e armazenamento são utilizadas para que a energia produzida seja acumulada até um nível utilizável. Neste sentido, este trabalho apresenta um estudo sobre uma configuração de piezoestrutura capaz de produzir um alto nível de energia mesmo que a frequência de excitação apresente variações. A piezoestrutura proposta é do tipo multifrequência aumentando a largura de banda de operação e podendo produzir um alto nível de energia mesmo que a frequência de excitação apresente alterações. A piezoestrutura multifrequência foi modelada por elementos finitos através do programa ANSYS© e posteriormente comparada com resultados experimentais. Em seguida, a tensão produzida foi extraída através dos circuitos retificador de onda completa em ponte e do dobrador de tensão buscando avaliar o desempenho de ambos na extração da energia produzida para armazenamento em um supercapacitor. Finalmente, a energia armazenada no supercapacitor foi utilizada para alimentar um sistema de monitoramento da temperatura de um ambiente de modo que o sistema passe a operar como um sistema autônomo
Abstract: The use of piezoelectric materials to transform mechanical energy from the vibrations into electrical energy has increased in the last decade trying to meet the need for alternative sources of energy to power up SHM systems and Unmanned Air Vehicle devices, making these standalone devices. This work presents a study on a configuration of a piezostructure being able to produce a higher energy even if the excitation frequency undergoes changes, and then evaluate two electronic circuit topology as simple interface for extracting the maximum energy produced and store it in a supercapacitor to power a sensor system that monitors the temperature in a room. Initially a brief review of the basics and fundamentals of energy harvesting was presented for better understanding of the development of this work. The proposal is a multifrequency piezostructure type that increases the bandwidth of operation and could produce a high energy value even if the excitation frequency undergoes alterations. The multifrequency piezostructure was modeled by finite element software ANSYS© and then compared with experimental results showing a good correlation between the numerical and experimental models. Then, a parametric study was conducted to determine which geometric parameter from the piezostruture should be varied so that the piezo-beams had their natural frequencies within the specified operating range. The voltage produced was extracted through two types of circuits (full wave rectifier and voltage doubler) trying to evaluate which one is able to extract the maximum possible energy produced for storage in a supercapacitor. Finally, the energy stored in the supercapacitor was used to power a system for monitoring the temperature of an environment so that the system operates as a standalone system
Mestre
APA, Harvard, Vancouver, ISO, and other styles
16

Basaran, Yanki. "Studies On The Development Of Magnetoelectric Ceramic Composites." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609612/index.pdf.

Full text
Abstract:
The aim of this thesis work was to develop magnetoelectric (ME) composites consisting of piezoelectric and magnetostrictive components. The piezoelectric constituent was selected as a PZT ceramic modified by strontium, bismuth and manganese. The magnetostrictive phase was nickel ferrite (NF) ceramic doped by cobalt, copper and manganese. The properties of component phases were optimized in order to enhance the ME effect in the composite. In the first part of the thesis, effects of sintering temperature on the dielectric and piezoelectric properties of PZT and on the electrical and magnetic properties of NF ceramics were investigated in the temperature range covered from 1150 to 1250 °
C. The best piezoelectric properties in PZT were attained at 1250 °
C. At this sintering temperature, values of piezoelectric strain coefficient, dielectric constant, and electromechanical coupling coefficient were 434 pC/N, 1320 and 0.48, respectively. NF ceramics showed poor densification
80 %TD was attained at 1250 °
C. In order to obtain higher densities in ferrites, Bi2O3 was used as a sintering aid. Addition of Bi2O3 enhanced densification up to 97 %TD, and improved electrical and magnetic properties of ferrites. Highest DC-resistivity of 1.15*10^8 ohm-cm and highest magnetostriction of ~26 ppm were attained in NF ceramics doped with 1 wt% Bi2O3. In the second part of the thesis, ME composites were manufactured either as bulk composites or as laminated composites. The efficiency of different composite types was evaluated in terms of voltage output in response to the applied magnetic field. Higher outputs were observed in laminated composites.
APA, Harvard, Vancouver, ISO, and other styles
17

Oliveira, Éder Luiz. "Application of piezoelectric materials as sensor and actuator for aeroelastic investigation." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3038.

Full text
Abstract:
This dissertation aims to apply piezoelectric materials as actuator and sensor to perform aeroelastic analysis. Two semi-span wing models based on flat plates with different characteristics were tested using PZT (Lead Zirconate Titanate) as actuator, PVDF (Polyvinylidene Fluoride) as sensor and the results were compared with vibrometer laser results. An aluminum model with a ballast on the wing tip, whose its location can be modified was tested in experimental modal analysis. Using the aluninum model, an investigation about aeroelastic behaviour was conducted in wind tunnel and the V-g/V-f diagram determined. This diagram shows the aeroelastic evolution of the natural frequencies and damping as function of speed (or dynamic pressure). In this aeroelastic analysis, the ability of the PVDF in determining the V-g/V-f diagram was evaluated. A numerical model of composite flat plate was generated considering the piezoelectric instrumentations. The second specimen tested corresponds to composite wing models that are based on laminate composite flat plate. Five models with different fiber orientations were tested in (pure) experimental modal analyses and wind tunnel, hence, the capability of excitation of PZT was verified. Good results were obtained regarding the estimation of natural frequency and damping factor using a single PVDF element. The application of PZT as actuator in the wind tunnel test showed improvement on the data acquisition in terms of noise. However, were observed some characteristics that require careful. As support to experimental tests, several studies were performed.
APA, Harvard, Vancouver, ISO, and other styles
18

Di, Maio Yoan. "Etude de l'interaction laser-matière en régime d'impulsions ultra-courtes : application au micro-usinage de matériaux à destination de senseurs." Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00994999.

Full text
Abstract:
Le laser à impulsions ultra-courtes constitue un procédé innovant et très avantageux pour la découpe de céramiques piézoélectriques PZT. Grâce à un fort confinement spatiotemporel de l'énergie au cours de l'interaction, ce système minimise les dégâts collatéraux et préserve l'intégrité physique du matériau sur des échelles micrométriques. Néanmoins, une propagation de faisceau mal maîtrisée, associée à des mécanismes d'interaction complexes fonction de la cible irradiée, peuvent impliquer de fortes disparités sur la qualité d'usinage. Dans le cadre d'une application industrielle donnée, ces travaux nous ont donc permis d'approfondir les principales étapes d'optimisation d'un tel procédé selon des critères de reproductibilité, de qualité et de rapidité. Pour cela, nous avons tout d'abord souligné l'influence des propriétés gaussiennes des faisceaux et de leur perturbation afin de définir la distribution énergétique au niveau des plans de focalisation. Aussi, la quantification de l'interaction via les critères de seuil et de taux d'ablation, d'incubation et de saturation a contribué à comprendre la réaction du matériau de manière macroscopique. Les problèmes méthodologiques inhérents à leurs calculs ont été mis en évidence et ont permis par la suite d'anticiper les formes d'usinage ainsi que les temps de procédé. Dans un second temps, l'optimisation des paramètres laser s'est appuyée sur des caractérisations aussi bien qualitatives pour l'aspect visuel que quantitatives avec l'estimation de la stoechiométrie et des contraintes résiduelles au niveau des flancs d'usinage. Nous avons en outre tiré profit de la piézoélectricité afin de développer une méthode d'observation in situ de la réponse à l'onde de choc laser contribuant à la compréhension des fissurations apparentes. Nous proposons au terme de ce travail un jeu de paramètres optimal pour la découpe de PZT assurant une bonne répétabilité du procédé tout en minimisant les défauts d'usinage comme la fissuration, les dépôts de surface et les irrégularités de bords. Des essais sur la mise en forme spatio-temporelle de faisceau sont enfin abordés principalement en tant que perspective d'accélération du procédé et encouragent son utilisation pour une future industrialisation
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Wenli. "HIGH PERFORMANCE PIEZOELECTRIC MATERIALS AND DEVICES FOR MULTILAYER LOW TEMPERATURE CO-FIRED CERAMIC BASED MICROFLUIDIC SYSTEMS." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/200.

Full text
Abstract:
The incorporation of active piezoelectric elements and fluidic components into micro-electromechanical systems (MEMS) is of great interest for the development of sensors, actuators, and integrated systems used in microfluidics. Low temperature cofired ceramics (LTCC), widely used as electronic packaging materials, offer the possibility of manufacturing highly integrated microfluidic systems with complex 3-D features and various co-firable functional materials in a multilayer module. It would be desirable to integrate high performance lead zirconate titanate (PZT) based ceramics into LTCC-based MEMS using modern thick film and 3-D packaging technologies. The challenges for fabricating functional LTCC/PZT devices are: 1) formulating piezoelectric compositions which have similar sintering conditions to LTCC materials; 2) reducing elemental inter-diffusion between the LTCC package and PZT materials in co-firing process; and 3) developing active piezoelectric layers with desirable electric properties. The goal of present work was to develop low temperature fired PZT-based materials and compatible processing methods which enable integration of piezoelectric elements with LTCC materials and production of high performance integrated multilayer devices for microfluidics. First, the low temperature sintering behavior of piezoelectric ceramics in the solid solution of Pb(Zr0.53,Ti0.47)O3-Sr(K0.25, Nb0.75)O3 (PZT-SKN) with sintering aids has been investigated. 1 wt% LiBiO2 + 1 wt% CuO fluxed PZT-SKN ceramics sintered at 900oC for 1 h exhibited desirable piezoelectric and dielectric properties with a reduction of sintering temperature by 350oC. Next, the fluxed PZT-SKN tapes were successfully laminated and co-fired with LTCC materials to build the hybrid multilayer structures. HL2000/PZT-SKN multilayer ceramics co-fired at 900oC for 0.5 h exhibited the optimal properties with high field d33 piezoelectric coefficient of 356 pm/V. A potential application of the developed LTCC/PZT-SKN multilayer ceramics as a microbalance was demonstrated. The final research focus was the fabrication of an HL2000/PZT-SKN multilayer piezoelectric micropump and the characterization of pumping performance. The measured maximum flow rate and backpressure were 450 μl/min and 1.4 kPa respectively. Use of different microchannel geometries has been studied to improve the pumping performance. It is believed that the high performance multilayer piezoelectric devices implemented in this work will enable the development of highly integrated LTCC-based microfluidic systems for many future applications.
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Ming. "FINITE ELEMENT ANALYSIS OF THE CONTACT DEFORMATION OF PIEZOELECTRIC MATERIALS." UKnowledge, 2012. http://uknowledge.uky.edu/cme_etds/15.

Full text
Abstract:
Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials. The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions. For indentation of a piezoelectric half space, a three-dimensional finite element model is used due to the anisotropy and geometric nonlinearity. The analysis is focused on the effect of angle between poling direction and indentation-loading direction on indentation responses. For the indentation by a flat-ended cylindrical indenter, both insulating indenter and conducting indenter without a prescribed electric potential are considered. The results reveal that both the indentation load and the magnitude of the indentation-induced potential at the contact center increase linearly with the indentation depth. For the indentation by an insulating Berkovich indenter, both frictionless and frictional contact between the indenter and indented surface are considered. The results show the indentation load is proportional to the square of the indentation depth, while the indentation-induced potential at the contact center is proportional to the indentation depth. Spherical indentation of piezoelectric thin films is analyzed in an axisymmetric finite element model, in which the poling direction is anti-parallel to the indentation-loading direction. Six different combinations of electrical boundary conditions are considered for a thin film perfectly bonded to a rigid substrate under the condition of the contact radius being much larger than the film thickness. The indentation load is found to be proportional to the square of the indentation depth. To analyze the decohesion problem between a piezoelectric film and an elastic substrate, a traction-separation law is used to control the interfacial behavior between a thin film and an electrically grounded elastic substrate. The discontinuous responses at the initiation of interfacial decohesion are found to depend on interface and substrate properties.
APA, Harvard, Vancouver, ISO, and other styles
21

Zai, Marvin Ho-Ming. "Chemical synthesis of lead zirconate titanate thin films for a piezoelectric actuator." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shaheen, Murtadha A. "POWER MAXIMIZATION FOR PYROELECTRIC, PIEZOELECTRIC, AND HYBRID ENERGY HARVESTING." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4462.

Full text
Abstract:
The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters. A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. This method demonstrates that for pyroelectric materials the impedance depends on two major factors: average working temperature, and the heating rate. Design and implementation of a hybrid approach using multiple piezoelectric cantilevers is presented. This is done to achieve mechanical and electrical tuning, along with bandwidth widening. In addition, a hybrid tuning technique with an improved adjusting capacitor method was applied. An toroid inductor of 700 mH is shunted in to the load resistance and shunt capacitance. Results show an extended frequency range up to 12 resonance frequencies (300% improvement) with improved power up to 197%. Finally, a hybrid piezoelectric and pyroelectric system is designed and tested. Using a voltage doubler, circuit for rectifying and collecting pyroelectric and piezoelectric voltages individually is proposed. The investigation showed that the hybrid energy is possible using the voltage doubler circuit from two independent sources for pyroelectrictity and piezoelectricity due to marked differences of optimal performance.
APA, Harvard, Vancouver, ISO, and other styles
23

Olzick, Adam. "Deposition, Characterization, and Fabrication of a Zinc Oxide Piezoelectric Thin Film Microspeaker Using DC Reactive Sputtering." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/767.

Full text
Abstract:
A piezoelectric microspeaker device that could be used in a variety of acoustic applications was designed and fabricated using a thin film ZnO layer that was reactively DC sputtered onto a single crystalline n-type silicon substrate. When tested the microspeaker did not produce sound due to complications in the etching process, the thickness of the diaphragms, and clamping effects. Instead, a characterization approach was taken and the structural, optical, electrical, and piezoelectric properties of the ZnO were investigated. Scanning electron microscopy, x-ray diffraction, and atomic force microscopy were utilized to discover the ZnO’s structural properties. Using the XRD and SEM, the as-sputtered ZnO films were found to have highly c-axis oriented columnar crystals. Optical properties were determined from the reflectance spectrums obtained from a Filmetrics F20 reflectometer and were used to determine the film thickness, the optical constants, and the optical band gap of the ZnO thin films. Using a four-point probe, the as-sputtered ZnO films were found to be highly resistive and insulative, mainly due to voided growth boundaries between the crystals. To improve electrical conductivity and piezoelectric response, ZnO samples were annealed at varying temperatures in a nitrogen environment. The annealing process successfully increased the electrical conductivity and piezoelectric properties of the films. The local piezoelectric properties of the ZnO were discovered with an Asylum MFP-3D and a piezoresponse force microscopy (PFM) technique called DART-PFM. The ZnO films that were sputtered with 70 watts and an argon to oxygen gas ratio of 2:1 were found to have the highest d33 piezoelectric coefficients. The ZnO sample that was annealed at 600°C for 30 minutes had the highest overall d33 value of 4.0 pm/V, which means that the 600°C annealed ZnO films would have the best chance of making a functional microspeaker.
APA, Harvard, Vancouver, ISO, and other styles
24

Xiang, Shu. "Piezoelectric thin films and nanowires: synthesis and characterization." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41139.

Full text
Abstract:
Piezoelectric materials are widely used for sensors, actuators and trasducers. Traditionally, piezoelectric applications are dominated by multicomponent oxide ferroelectrics such as lead zirconate titanate (PZT), which have the advantage of high piezoelectric coefficients. Recently, one-dimensional piezoelectric nanostructures such as nanowires of zinc oxide (ZnO) and gallium nitride (GaN) has gained a lot of attention due to their combined piezoelectric and semiconducting properties. The focus of this thesis is to study the processing and electric properties of such piezoelectric thin films and nanostructures for various applications. There is an increasing interest to form thin films of multicomponent ferroelectric oxides such as PZT on three-dimensional structures for charge storage and MEMS applications. Traditional vapor phase deposition techniques of PZT offer poor conformality over threedimensional surfaces due to their reactant transport mechanisms. As an alternative, solgel synthesis may provide new process possibilities to overcome this hurdle but the film quality is usually inferior, and the yield data was usually reported for small device areas. The first part of this study is dedicated to the characterization of the electric properties and yield of PZT thin film derived from the sol-gel process. PZT thin films with good electric property and high yield over a large area have been fabricated. La doping was found to double the breakdown field due to donor doping effect. LaNiO3 thin films that can be coated on a three-dimensional surface have been synthesized by an all-nitrate based sol-gel route, and the feasibility to form a conformal coating over a three-dimensional surface by solution coating techniques has been demonstrated. ZnO and GaN micro/nanowires are promising piezoelectric materials for energy harvesting and piezotronic device applications. The second part of this study is focused on the growth of ZnO and GaN micro/nanowires by physical vapor deposition techniques. The morphology and chemical compositions are revealed by electron microscopy. Utilizing the as-grown ZnO nanowires, single nanowire based photocell has been fabricated, and its performance was studied in terms of its response time, repeatability, excitation position and polarization dependence upon He-Cd UV-laser illumination. The excitation position dependence was attributed to the competition of two opposite photo- and thermoelectric currents originated from the two junctions. The excitation polarization dependence was attributed to the difference in optical properties due to crystallographic anisotropy. Employing the as-grown GaN nanowires, single nanowire based strain sensor is demonstrated, and its behavior is discussed in terms of the effect of strain-induced piezopotential on the Schottky barrier height.
APA, Harvard, Vancouver, ISO, and other styles
25

Maaroufi, Seifeddine. "Conception et réalisation d’un banc pour l’étude de fiabilité des micros dispositifs piézoélectriques de récupération d’énergie dédiés aux implants cardiaques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS187/document.

Full text
Abstract:
Dans le cadre de cette thèse de doctorat, nous présentons la conception et la réalisation d’un banc dédié à l’étude de la fiabilité de structures piézoélectriques et plus précisément des micro-dispositifs de récupération d'énergie destinés aux implants médicaux autonomes actifs (stimulateurs cardiaques de nouvelle génération). Les structure étudiées se présentent sous la forme d’un bimorphe piézoélectrique encastré-libre comportant une masse sismique à leur extrémité. Une bonne compréhension du vieillissement des matériaux et des modes de défaillance mécanique et électrique est essentielle pour ce type de système où la vie du patient au sein duquel est implanté le dispositif est directement mise en jeu. Pour étudier la fiabilité et la durabilité de la partie active du récupérateur, nous proposons d'établir une nouvelle méthodologie de vieillissement accélérée via un banc d'essai dédié où l'environnement et les stimuli peuvent être contrôlés avec précision sur une large période de temps. Une caractérisation électromécanique des structures est périodiquement réalisée via l’extraction d’une série d’indicateurs (force de blocage, raideur, tension en régime harmonique) au sein même du banc tout au long du vieillissement. Il est donc ainsi possible d'identifier les différents modes de défaillance potentiels et d’étudier leurs impacts sur le bon fonctionnement du système
Within the framework of this PhD we present the design and realization of a bench dedicated to the study of the reliability of piezoelectric structures and more precisely micro-devices of energy harvesting for the new generation of active and autonomous medical implants. The structures studied are in the form of a free-clamped piezoelectric bimorph having a seismic mass at their tip. A good understanding of the aging of the materials and of the mechanical and electrical failure modes is essential for this type of system where the life of the patient implanted by this device is directly involved. To study the reliability and durability of the active part of the harvester, we propose to establish a new accelerated aging methodology via a dedicated test bench where the environment and stimuli can be controlled accurately over a large period of time. An electromechanical characterization of the structures is periodically carried out by the extraction of a series of indicators (blocking force, stiffness, tension in harmonic regime) within the bench throughout the aging process. Therefore it is possible to identify the different potential failure modes and to study their impact on the proper functioning of the system
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Qingli 1973. "Development and application of integrated and flexible transducers." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116018.

Full text
Abstract:
Health monitoring of aeronautic structures and human beings is becoming crucial because of the human safety issues. In this thesis integrated (IUTs) and flexible ultrasonic transducers (FUTs) have been developed using a sol-gel spray piezoelectric film fabrication technology. IUTs can be fabricated directly onto the structures with curved surfaces even on-site. FUTs were made using membrane substrates of thickness less than 75 mum. In-situ monitoring of AI airframe thickness was carried out and the thickness measurement accuracy was better than 36 mum and 41 mum for IUT and FUT, respectively. The thickness of the ice on top of the AI airframe was also measured. Two crucial piezoelectric constants d33 and d31 of the composite film were measured with laser interferometer and optical coherence tomography system, respectively. Pulse and breath of a human being were also monitored using flexible piezoelectric membrane sensors. In addition, bones in human body were observed using FUTs as well and their performance is comparable to that of commercial ultrasonic transducers.
APA, Harvard, Vancouver, ISO, and other styles
27

Moreira, Filho Robério Paredes. "Análise e caracterização da potência elétrica gerada com elemento piezoelétrico." Universidade Federal da Paraí­ba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/5299.

Full text
Abstract:
Made available in DSpace on 2015-05-08T14:57:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2859184 bytes, checksum: 1715e0300f8f547f3f4d0e5ea3c865ab (MD5) Previous issue date: 2014-02-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents a characterization study of a piezoelectric element for generating electricity. This characterization allowed the determination of the relationship between mechanical deformation experienced by the element generator (piezoelectric) and the electric power generated. The results of the study were based on simulations using a finite element program (ANSYS) and experimental data. Was used the ceramic Lead Zirconate Titanate (PZT) as the piezoelectric element of the generator. We developed a generator comprised of a basic cantilever beam excited by a shaker (exciter) at the frequencies of interest. With the use of this generator, it was established that the maximum voltage generation and electrical power occurred at a frequency of 75 Hz. For a load of 19.69 kΩ, which divided the voltage generated under no load condition by half at the frequency of 75 Hz, it was provided an electric power of 1,877 mW for a deformation of 387,97 μm/m on the PZT. For this frequency, the results of elastic deformation and voltage in the simulations, showed to be equivalent to those achieved in the experiment.
Este trabalho apresenta um estudo de caracterização de um elemento piezoelétrico para geração de energia elétrica. Essa caracterização permitiu a determinação da relação entre a deformação mecânica sofrida pelo elemento gerador (piezoelétrico) e a potência elétrica gerada. Os resultados obtidos pelo estudo foram baseados em simulações utilizando um programa de elementos finitos (Ansys) e em dados experimentais. Como elemento piezoelétrico gerador foi utilizada a cerâmica piezoelétrica de Zirconato Titanato de Chumbo (PZT). Para a obtenção dos resultados experimentais, foi desenvolvido um gerador composto por uma viga monoengastada excitada por um shaker (excitador) nas frequências de interesse. Com a utilização deste gerador foi possível constatar que a máxima geração de tensão e potência elétrica ocorreu na frequência de 75 Hz. Para uma carga de 19,69 kΩ, que dividiu, a tensão elétrica gerada em circuito aberto, pela metade na frequência de 75 Hz, foi fornecida uma potência elétrica de 1,877 mW para uma deformação de 387,97 μm/m sobre o PZT. Para esta frequência, os resultados obtidos de deformação elástica e tensão elétrica nas simulações, se mostraram equivalentes aos alcançados no experimento.
APA, Harvard, Vancouver, ISO, and other styles
28

Wague, Baba. "Matériaux sans plomb micro structurés pour la récupération d'énergie." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC003/document.

Full text
Abstract:
Avec le développement des circuits intégrés à très faible consommation d'énergie, la nécessité de réduire les coûts d'exploitation des dispositifs électroniques embarqués et l'utilisation des piles usagées constituant une menace pour l'environnement, le concept de récupération d'énergie a acquis un nouvel intérêt. La récupération d'énergie couvre le piégeage de nombreuses sources d'énergie ambiantes perdues et leur conversion en énergie électrique. Une large gamme de dispositifs de récupération d'énergie des vibrations mécaniques a été développée. Une configuration commune consiste en un système de masse-ressort avec un matériau piézoélectrique en parallèle avec le ressort pour convertir une partie de l'énergie mécanique pendant les oscillations en énergie électrique. Jusqu'à présent, le matériau le plus utilisé pour la récupération d'énergie piézoélectrique est le titano-zirconate de plomb (PbZr1-xTixO3) (PZT). Le PZT est le matériau de référence pour les applications microsystème électromécanique-MEMS (MechanoElectroMechanicalSystems) dans le domaine de la récupération d'énergie. Les matériaux piézoélectriques à base de plomb tels que le PZT et niobate-titanate de plomb-magnésium (PMN-PT) offrent des facteurs de couplage piézoélectriques supérieurs à ceux d'autres matériaux. Cependant, malgré ses excellentes propriétés électriques (diélectriques, ferroélectriques et piézoélectriques), le PZT et d'autres matériaux à base de plomb devraient bientôt être remplacés par des composés sans plomb, à cause des problèmes environnementaux. Notre travail vise à développer des matériaux sans plomb de haute performance pour la récupération d'énergie par vibration mécanique. Nous nous sommes intéressés à la fabrication et la caractérisation des dispositifs MEMS pour la récupération d'énergie en utilisant les matériaux piézoélectriques sans plomb tels que le nitrure d'aluminium (AIN), le titanate de baryum BaTiO3 (BTO) et la ferrite de bismuth BiFeO3 (BFO). Les matériaux piézoélectriques PZT (utilisé comme référence à cause ses coefficients piézoélectriques élevés), BTO, BFO et AIN ont été déposés en utilisant des méthodes de dépôt telles que la pulvérisation cathodique et le dépôt sol-gel, conduisant à des films minces à grande échelle, homogènes et de haute densité, avec une épaisseur contrôlée avec précision. Le dépôt de films de 300 nm d'épaisseur par pulvérisation cathodique ou par Sol-Gel a été réalisé sur du substrat de SrTiO3 (STO) recouvert d'une électrode inférieure de SrRuO3 (SRO), qui est le substrat de référence pour les oxydes fonctionnels (PZT, BTO et BFO), et sur un substrat de silicium recouvert de platine, qui est le modèle industriel classique. Quels que soient les matériaux piézoélectriques, nous avons obtenu des films épitaxiés sur substrat de STO et texturés sur substrat de silicium. Des mesures structurales, électriques et piézoélectriques sur les films de BTO, AIN et PZT montrent qu'ils ont de bonnes propriétés physiques en accord avec la littérature
With the development of ultra-low-power integrated circuits, the need to reduce operating costs for embedded electronic devices, and since used batteries pose a threat to the environment, the concept of energy harvesting has gained a new relevance. Energy harvesting covers the scavenging of many lost ambient energy sources and their conversion into electrical energy. A broad range of energy harvesting devices has been developed to scavenge energy from mechanical vibrations. A common configuration consists of a spring-mass system with a piezoelectric material in parallel with the spring to convert some of the mechanical energy during oscillations into electrical power. So far the most used material for piezoelectric energy harvesting is the Lead Zirconate Titanate (PbZr1-xTixO3) (PZT). PZT is the reference material for MEMS (MechanoElectroMechanicalSystems) applications in the field of energy harvesting. Lead-based piezoelectric materials such as PZT and lead magnesium niobate-lead titanate (PMN-PT) offer incomparable piezoelectric coupling factors to other materials. However, despite its excellent electrical properties (dielectric, ferroelectric and piezoelectric), PZT and other Lead based materials should be replaced shortly by leadfree compounds, due to environmental issues. Our work aims at developing lead-free high performance vibration energy-harvesting. We focus on the fabrication and characterization of aluminum nitride (AlN), Barium titanate BaTiO3 (BTO) and Bismuth ferrite BiFeO3 (BFO) devices for energy harvesting. PZT (as a reference because it’s high piezoelectric coefficients), BTO, BFO and AlN have been deposited using sputtering methods, leading to high homogeneous, large scale thin films with a precisely controlled thickness. The deposition of 300nm-thick films by sputtering or spin coating was performed on SrTiO3 (STO) substrate with SrRuO3 (SRO) bottom electrode, which is the reference substrate for the functional oxides (PZT, BTO and BFO), and platinum coated silicon substrate, which is the classic industrial template. Whatever the piezoelectric materials, we obtained epitaxial films on STO substrate and textured films on silicon substrate. Structural, electrical and piezoelectric measurements on the BTO, AlN and PZT films show that they have good physical properties in agreement with the literature
APA, Harvard, Vancouver, ISO, and other styles
29

CHIANG, I.-TING, and 江宜定. "The production and characteristic test of piezoelectric ceramic material PZT and PMN-PT." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/9hk394.

Full text
Abstract:
碩士
國立中正大學
機械工程系研究所
104
This study mainly reported the production of lead zirconate titanate(PZT) and relaxor ferroelectric materials (PMN-PT) by sol - gel method and solid state reaction method. We fabricated initial powder by sol-gel method and then to make the powder into the round structure. After that, the processed materials were sintered in high temperature by solid state reaction method. This procedure reduces the requirement of use metal as a substrate. In the first place, we established a fabrication process by utilizing the commercial PZT powder and then use the developed process to produce piezoelectric materials PMN-PT. We measured characteristic of the fabricated piezoelectric elements through the impedance analyzer, laser displacement meter, transmitting and receiving test of ultrasound wave and pulse-echo test. The result of pulse-echo experiment shows that the PMN-PT transducer performs better than the PZT transducer. Although the primary resonant frequency of the PZT is different from the PMN-PT, the signal intensity of PMN-PT from data is better than that of the PZT. As for the laser displacement measurement, the PMN-PT device possesses a 1.85μm displacement operated in 836Hz, which is larger than the displacement of 0.3465μm produced by the PZT device operated in 600Hz when both cases actuated with 10V sinusoidal wave.
APA, Harvard, Vancouver, ISO, and other styles
30

林育正. "Investigation of PbMnSb-PZ-PT and PbMnSb-PbNiNb-PZ-PT Piezoelectric Ceramic Materials." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/60786448863786625103.

Full text
Abstract:
碩士
大同大學
材料工程研究所
91
Abstract In the multiplayer ceramic, the internal electrodes are sintered together. So the reduction of sintering temperature not only can decrease the pollutions and save energy, but also can diminish the cost of the electrodes substantially. Although with lower sintering temperature, the piezoelectric properties of ceramics are decayed usually. By means of suitable calcination at higher temperature and then sintering at low temperature would be solution of obtaining good piezoelectric properties and low cost of fabrication. In this study, Pb(Mn1/3Sb2/3)O3-PbZrO3-PbTiO3 and PbO(MnxSb2xO6x)-PbO(NiyNb2yO6y) -PbZrO3-PbTiO3 two ceramics systems were prepared by several combination of calcination and sintering temperatures. After calcinated at 1100℃ for three hours and sintered at 1150℃ for two hours, we can get the characteristics of the 0.05Pb(Mn1/3Sb2/3)O3-0.48PbZrO3-0.47PbTiO3 composition as Qm=1606, Kp=0.6 and E33=770. Higher sintering temperature would decrease the Qm value. In the PMS-PNn-PZ-PT system, the addition of small amount of NiNb206 can increase the Kp value and dielectric constant of the system. The best combinations of the piezoelectric characteristics of the 0.05{PbO(Mn5/18Sb10/18)O30/18}-0.05{PbO(Ni1/18Nb2/18O6/18)}-0.48{PbZrO3}-0.47{PbTiO3} composition are Qm=1658, Kp=0.63 and E33=1054, in the conditions of calcination at 1200℃ for three hours and sinter at 1050℃ for two hours. The piezoelectric characteristics we get here are sintered at 100℃ lower but better than the PMS-PZ-PT system. The more amount of PNN in the system, the higher dielectric constant we can get, but that would result in the decrease of the Qm value.
APA, Harvard, Vancouver, ISO, and other styles
31

Kamble, Sandeep Namadev. "Indentation Strength Of Piezoelectric Ceramics." Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

陳永欽. "The analysis of composite PZT ceramic and simulation of piezoelectric transducer using PSPICE." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/50931023291997412623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tsai, Yao-Kun, and 蔡耀坤. "Applications of Piezoelectric Ceramic Materials to 3C Products." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/16742483206424473016.

Full text
Abstract:
博士
國立交通大學
機械工程學系
99
The thesis focuses on three applications of piezoelectric ceramic materials: optimization of the piezoelectric panel speakers, touch panel application based on time-reversal approach and optimized design of the energy harvester. The first application deals with the optimized design of the piezoelectric panel speaker, two piezoelectric ceramic plates serve to excite the diaphragm is adopted in the panel speaker design. In light of an optimization procedure, the optimal position on the diaphragm to mount the piezoelectric ceramic plates is determined. In the system modeling stage, a finite element model (FEM) is established using the energy method, where the electrical system, mechanical system and acoustic loading of the transducer are considered as a coupled system. The simulated annealing (SA) algorithm is exploited to attain a design that enables low fundamental resonance frequency and high acoustic output. Experiments are conducted to verify the numerical model. The experimental results are in good agreement with the numerical prediction, in which the performance of the optimized configuration is found to be significantly improved over the non-optimal design. In the second application, a combined impact localization and haptic feedback system presented for the touch panel application is presented in the thesis. Theoretical impulse responses are derived based on propagation of bending waves in a thin elastic plate. On the basis of the impulse responses, the time reversal technique is exploited to localize the impact location as well as to generate haptic feedback. The chief advantage of the time reversal technique lies in its robustness of tackling broadband sources in a reverberant environment. Piezoelectric ceramic plates and voice-coil motors are used as sensors for localization, whereas only voice-coil motors are used as the actuator for haptic feedback. Experimental results demonstrated that the proposed system is effective in impact localization for a thin panel, while haptic feedback that is also implemented using time reversal principle can generate an impulse at the previously touched position. The combined impact localization and haptic feedback system effectively enhances the sensation of interaction in real time fashion. Energy harvester is the last device studied in the thesis. The thesis presents a piezoelectric energy harvester by which the vibration energy induced by a moving mass is converted to electrical energy through the piezoelectric effect. An electromechanically coupled FEM based on the Euler-Bernoulli beam theory is employed to estimate the electrical energy that can be generated by the energy harvester. The effects of mass ratio, beam length, travel time and load resistance on the energy output are examined. As indicated by the simulation and experiment results, it is observed that the numerical model can successfully predict the dynamics of the couple system based on the selected electrical load resistance. In the design stage, the nonlinear conjugate gradient (CG) algorithm is applied for calculation to maximize the energy throughput from the energy harvester. Results have shown that the harvested energy depends heavily upon the optimal choice of load resistance and travel time of the moving mass. In addition, the longer beam or the higher mass ratio, the higher energy throughput can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
34

Yang, Rui-Hao, and 楊瑞豪. "Effect of Silica-Based materials on Piezoelectric Properties of PZT/Cement." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/49c2h6.

Full text
Abstract:
碩士
國立高雄應用科技大學
土木工程與防災科技研究所
102
Absract Cement-based piezoelectric composites consist of PZT inclusions and cement binder, where both are 50% by volume, called as PP material. Several silica-based materials such as quartz flour, diatomaceous earth, silica fume, glass powder, kaolin, carbon black and titanium dioxide, were added to PP material as the replacement of partial cement. Specimens were drily mixed and pressed by 80MPa. After 1 day’s curing, specimens were polarized by 1.5kV/mm at 150℃ for 40 minutes. Microspopic structures and piezoelectric properties of cement piezoelectric compsites were investigated with respect to admixtures and pretreatment temperature. Experimental results indicate that piezoelectric strain constant (d33) and dielectric constant (r) of PP material increase with increasing temperature pretreatment. The d33 value increases from 57pC/N to 106pC/N and the r from 275 to 455 while the temperature changes from 23℃ to 150℃. Those values are the highest piezoelectric factors up to now. From the observations of optical microscope, the porosity of the composites first decreases, and then increases again as increasing the content of admictures. Lower porosity of the composites has higher d33 and r. Nevertheless, no regularity has found for piezoelectric voltage constant g33. PP materials containing 2% quartz flour has the highest d33 with 134pC/N, compared with the other composites. Adding silica-based materials to PP material can adequately promote electromechanical coupling coefficient Kt and dielectric loss D. Higher dielectric loss of the composites is not easy to be poled during the polarizations. Keywords: Cement-based composites, Polarization, lead zirconate titanate (PZT), piezoelectric strain constant, silica-based materials
APA, Harvard, Vancouver, ISO, and other styles
35

Yeh, Tzung-Shin, and 葉宗鑫. "Investigation of 0.05Pb(Mn1/3Sb2/3)O3-0.48PbZrO3-0.47PbTiO3 Piezoelectric Ceramic Materials." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/17386792513424396552.

Full text
Abstract:
碩士
大同大學
材料工程學系(所)
92
In this study, 0.05Pb(Mn1/3Sb2/3)O3-0.48PbZrO3-0.47PbTiO3 (so-called PbMnSb-PZ-PT) and various weight percent of Pb(Ta1/2Sc1/2)O3 in 0.05Pb(Mn1/3Sb2/3)O3-0.48PbZrO3-0.47PbTiO3 two systems were prepared by several combination of calcined temperature and sintering temperature to observe the difference of physical properties. In the multilayer ceramic, the internal electrodes are sintered together. So the reduction of sintering temperature not only can decrease the pollutions and save energy, but also can diminish the cost of the electrodes substantially. Although with lower sintering temperature, the piezoelectric properties of ceramics are decayed usually. By means of suitable calcination at higher temperature and then sintering at low temperature would be solution of obtaining good piezoelectric properties and low cost of fabrication. In PbMnSb-PZ-PT, the Qm value are all above 1676 at calcined temperature 1200℃ and sintering temperatures 1100℃、1150℃ and 1200℃, the best Qm value is 1707 at sintering temperature 1100℃. The best kp values are 0.605、0.601 and ε33 values are 856、853 at sintering temperature 1150℃ and 1200℃, respectively. The Qm、kp and ε33 are decrease because the over high sintering temperature, this might be high sintering temperature cause serious PbO vaporization. Adding various weight percent of Pb(Ta1/2Sc1/2)O3 in 0.05Pb(Mn1/3Sb2/3)O3-0.48PbZrO3-0.47PbTiO3 system. The Qm value can maintain at 1526 at sintering temperature 1050℃ when the amount of adding Pb(Ta1/2Sc1/2)O3 is 0.5 wt%. The kp values can reach on 0.584、0.602 and ε33 values are 837、843 at sintering temperature 1050℃ and 1100℃, respectively. The Qm、kp and ε33 are decrease with the increase of amounts of adding Pb(Ta1/2Sc1/2)O3. Although the best Qm value after adding Pb(Ta1/2Sc1/2)O3 is smaller than the best Qm value without adding Pb(Ta1/2Sc1/2)O3, the sintering temperature can decrease 50℃ to 100℃. Even more, the kp values and ε33 values can increase.
APA, Harvard, Vancouver, ISO, and other styles
36

Berfield, Thomas A. "Residual stress development and effect on the piezoelectric performance of sol-gel derived lead zirconate titanate (PZT) thin films /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3314731.

Full text
Abstract:
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2008.
Source: Dissertation Abstracts International, Volume: 69-05, Section: B, page: 3078. Adviser: Nancy R. Sottos. Includes bibliographical references. Available on microfilm from Pro Quest Information and Learning.
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Jing Feng, and 楊景峰. "Investigation of Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramic materials with high d33 and the effect of soft doping." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/92434493867636397784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bharathi, P. "Investigations into the Synthesis, Structural and Multifunctional Aspects of Ba0.85Ca0.15Zr0.1Ti0.9O3 and K0.5Na0.5NbO3 Ceramics." Thesis, 2016. http://etd.iisc.ernet.in/2005/3747.

Full text
Abstract:
Non-centrosymmetric materials that can be polarized under applied mechanical stress or electric field are piezoelectric in nature and the phenomenon is called piezoelectric effect. They are broadly classified as direct and converse piezoelectric effects. Piezo-ceramics have a wide range of applications such as piezoelectric actuators, sensors, and transducers. Among piezoceramics, ferroelectric based materials are imperative owing to the existence of spontaneous polarization in these systems. Several materials are investigated starting from naturally occurring crystals to synthetic ceramics but are limited in their application range. The piezoelectric and ferroelectrics properties of the solid-solutions based on lead zirconate and lead titanate called lead zirconate titanate (PZT), lead magnesium niobate-lead titanate (PMN-PT), lead zinc niobate-lead titanate (PZN-PT) (near morphotrophic phase boundary (MPB)) demonstrate their potential for myriad device applications besides inciting a great deal of academic interest. They have been widely used for commercial applications such as ultra sound transducers, ultrasonic motors, fuel injector actuators, nano positioners in scanning electron microscope etc. However, these materials contain more than 60% lead by weight and volatization of Pb at higher temperature, and disposal of lead results in environmental pollution and are fatal to human health. This gave an insight to search for lead-free solid solutions covering a wide spectrum of applications akin to that of PZT. The search for alternatives to lead based piezoelectric materials is now being focused on modified barium titanates and alkali niobates in which the incidence of MPB was reported similar to that of PZT. In this thesis the results pertaining to the various investigations carried out on modified barium titanates, Ba(Zr0.2Ti0.8)O3- x(Ba0.7Ca0.3)TiO3(BCZT), and alkali niobates, potassium sodium niobate (KNN), are presented. Especially, lead-free piezoelectric material Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3(BCZT) with x= 0.5 has attracted great attention due to its excellent piezoelectric properties. Contrary to the other Pb-free systems, the BZT–BCT phase diagram shows a Morphotropic Phase Boundary (MPB) characterized by the existence of a tri-critical point (TCP), which is also the case for PZT and PMN–PT. One drawback of the BZT–xBCT (x=0.5) is its high sintering temperature (where it exhibits the largest d33 of 550 – 620pC/N). Several methods have been adopted and various additives are being added to bring down the sintering temperature, since high d33 requires an optimized sintering temperature of around 1540oC which also shows excellent ferroelectric properties. However, the methods that were reported in the literature to synthesize the above materials do not guarantee compositional homogeneity and also there is a limitation in obtaining ceramics of enhanced grain size as the ceramics comprising larger grains are demonstrated to exhibit high piezoelectric coefficients. Therefore to address these issues, the simple soft chemical route was adopted to synthesize chemically homogenous powder and the influence of microstructure (grain size) and ferroelectric domains on piezoelectric properties of the BCZT at nano and micron sized crystallites was studied. The results obtained are classified into chapter 3 and chapter 4 accordingly apart from introduction, materials, and methods. Another challenging area of research in lead free piezoceramics for nanoscale device application is to synthesize materials and to visualize the piezoelectric properties at nanoscale with controlled shapes and sizes. For that, Mg2+ ion was chosen as the dopant especially on Ba2+ sites to synthesize Ba0.95Mg0.05Zr0.1Ti0.9O3 (BMZT) nanocrystals, as MgO is known to be an effective grain growth inhibitor in many functional and structural ceramics. Therefore in the present thesis Mg2+ ion was chosen to exercise a strict control over the grain size. The results obtained from this title compound are discussed in chapter 5. Another class of material is K0.5Na0.5NbO3 (KNN), which has been considered a good candidate for lead-free piezoelectric materials. KNN exhibits an MPB around 50% K and 50% Na separating two orthorhombic phases from the complete solid solution of NaNbO3 (Anti-ferroelectric) and KNbO3 (ferroelectric). The major problem associated with KNN ceramic is its complex densification process; difficulty in processing and volatilization of sodium at higher sintering temperature leading to stoichiometric discrepancy. To overcome these difficulties, in the present investigations, an attempt has been made to fabricate KNN ceramics by employing the liquid phase sintering method. In this chapter, B2O3 and borate based glass (0.5 Li2O - 0.5K2O- 2B2O3) were chosen to improve the densification, grain size and their effects on the physical properties of the KNN ceramics are discussed in chapter 6. In chapter 7, KNN crystallites (with size varying from nano to micrometers) were dispersed in the Polyvinylidene fluoride (PVDF) matrix to obtain a polymer/nano or micro crystal composites and the effect of nano and micron sized KNN fillers on the structural, dielectric and piezoelectric properties were investigated. The results obtained pertaining to these aforementioned investigations are organized as follows. In Chapter 1, a brief introduction to the field of ferroelectricity, piezoelectricity, and piezoelectric materials. The emphasis has been on the ferroelectric based piezoelectric materials belonging to the perovskite family of oxides. A brief exposure to the conventional lead based piezoceramics, lead zirconate titanate (PZT) is discussed. Furthermore, drawbacks associated with lead based ceramics are highlighted and alternatives to PZT based ceramics such as modified barium titanate and alkali niobate solid solutions are focused, leading to the motivation and objectives of our work. Chapter 2 describes the various experimental techniques that are employed to synthesize and characterize the materials under investigation. Chapter 3 deals with details concerning the characterization of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) nanocrystals prepared via complex oxalate precursor route at a relatively low temperature (800°C/5h). The phase formation temperature of BCZT at nanoscale was confirmed by thermogravimetric (TG), differential thermal analysis (DTA) followed by X-ray powder diffraction (XRD) studies. Fourier Transform Infrared (FTIR) spectroscopy was carried out to confirm the complete decomposition of oxalate precursor into BCZT phase. The XRD and profile fitting revealed the coexistence of cubic and tetragonal phases and was also corroborated by Raman study. Transmission electron microscopy (TEM) studies carried out at 800°C and 1000°C/5h heat treated BCZT powder revealed the crystallite size to be in the range of 20 – 50 nm and 40 – 200 nm respectively. The optical band gap for BCZT nanocrystalline powder was obtained using Kubelka Munk function and was found to be around 3.12 ± 0.02 eV and 3.03± 0.02 eV respectively for 800°C (20 – 50 nm) and 1000°C/5h (40 – 200 nm) heat treated samples. The piezoelectric properties were studied for two different crystallite sizes (30 and 70 nm) using piezoresponse force microscope (PFM). The d33 coefficients obtained for 30 nm and 70 nm sized crystallites were 4 pm/V and 47 pm/V respectively. These were superior to those of BaTiO3 nanocrystal (≈ 50 nm) and promising from the technological/industrial applications perspective. Chapter 4 deals with the studies concerning the effect of microstructure (Grain size) and ferroelectric domains on physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Fine powders comprising nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) were synthesized via oxalate precursor method which facilitated to obtain homogenous and large grain sized ceramics at a lower sintering temperature. The compacted powders were sintered at various temperatures in the range of 1200°C - 1500°C for an optimized duration of 10h. Interestingly the one that was sintered at 1450°C/10h exhibited well resolved Morphotrophic Phase Boundary (MPB). The average grain size associated with this sample was 30 µm accompanied by higher domain density mostly with 90° twinning. These were believed to make a significant contribution towards obtaining large strain of about 0.2 % and piezoelectric coefficient as high as 563 pC/N. The maximum force that was generated by BCZT ceramic (having 30 µm grain size) was found to be 161 MPa which is much higher than that of known actuator materials such as PZT (40 MPa) and NKN-5-LT (7 MPa). Chapter 5 reports the details involving the synthesis, structural, optical, and piezoelectric response of lead free Ba0.95Mg0.05Zr0.1Ti0.9O3 nanocrystalline powder. Nanocrystalline powders of Ba1-xMgxZr0.1Ti0.9O3 (x=0.025 - 0.1) were synthesized via citrate assisted sol-gel method. Interestingly, the one with x=0.05 in the system Ba1-xMgxZr0.1Ti0.9O3 exhibited fairly good piezoelectric response apart from the other physical properties. The phase and structural confirmation of synthesized powder was established by X-ray powder diffraction (XRD) and Raman Spectroscopic techniques. Two distinct Raman bands i.e., 303 cm-1 and 723 cm-1 characteristic of the tetragonal phase were observed. Thermogravimetric analysis (TGA) was performed to evaluate the phase decomposition of the as-synthesized Ba0.95Mg0.05Zr0.1Ti0.9O3 sample as a function of temperature. The average crystallite size associated with Ba0.95Mg0.05Zr0.1Ti0.9O3 was calculated using Scherrer formula based on the XRD data and was found to be 25 nm. However, Scanning and Transmission Electron Microscopy studies revealed the average crystallite size to be in the range of 30-40 nm. Kubelka-Munk function was employed to determine the optical band gap of these nanocrystallites. The piezoelectric response of 26 pm/V was observed for Ba0.95Mg0.05Zr0.1Ti0.9O3 nanocrystal by Piezoresponse Force Microscopy (PFM) technique. Photoluminescence (PL) study carried out on these nanocrystals exhibited a blue emission (470 nm) at room temperature. Chapter 6 describes the effect of the addition of B2O3 on the density, microstructure, dielectric, piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics. Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1 to 1 wt %) of B2O3 were added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with the highest possible density and grain size. The 0.1 wt% B2O3 added KNN ceramics sintered at 1100°C for 7h exhibited higher density (98%) with grain size of ~5 µm. Scanning electron microscopy (SEM) studies confirmed an increase in average grain size with increasing B2O3 content at the appropriate temperature of sintering and duration. The B2O3 added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3 added KNN ceramic exhibited d33 value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3 added (0.1 to 1wt %) KNN ceramics exhibited polarization – electric field (P vs E) hysteresis loops at room temperature. The remnant polarization (Pr) and coercive field (Ec) values are dependent on the B2O3 content and crystallite size. The details pertaining to the effect of the addition of borate based glass (0.5 Li2O - 0.5K2O- 2B2O3) on the physical properties of K0.5Na0.5NbO3 ceramics are also reported in this chapter. The addition of powdered 0.5 Li2O - 0.5K2O- 2B2O3 (LKBO) glass (0.5 to 2 wt%) to potassium sodium niobate, K0.5Na0.5NbO3 (KNN) powder facilitated higher densification which resulted in improved physical properties that include dielectric, piezoelectric and ferroelectric. The required polycrystalline powders of KNN were synthesized through solid-state reaction route, while LKBO glass was obtained via the conventional melt-quenching technique. Pulverized glass was added to KNN powders in different wt% and compacted at room temperature and these were sintered around 1100°C. Indeed the addition of optimum amount (1 wt %) of LKBO glass to KNN ceramics facilitated lowering of sintering temperature accompanied by larger grains (8 µm) with improved density. The dielectric constant (εr) measured at room temperature was 475 (at 10 kHz), whereas it was only 199 for the LKBO glass free KNN. The piezoelectric coefficient (d33) was found to be 130 pC/N for 1wt% LKBO added glass, which was much higher than that of pure KNN ceramics (85 pC/N). Indeed, the LKBO glass added samples did exhibit well saturated P versus E hysteresis loops at room temperature. Though there was no particular trend observed in the variation of Pr with the increase in glass content, the Pr values were higher than those obtained for KNN ceramics. The improved physical properties of KNN ceramics encountered in these studies were primarily attributed to enhancement in density and grain size. Chapter 7 presents a comparative study on the structural, dielectric and piezoelectric properties of nano and micron sized K0.5Na0.5NbO3 fillers in PVDF composites. Polymer nanocrystal composites were fabricated by embedding polyvinylidene fluoride (PVDF) with different vol% of K0.5Na0.5NbO3 (KNN) nanocrystallites using hot-pressing technique. For comparison, PVDF-KNN microcrystal composites of the same compositions were also fabricated which facilitated the crystallite size (wide range) effect studies on the dielectric and piezoelectric properties. The structural, morphological, dielectric, and piezoelectric properties of these nano and micro crystal composites were investigated. The incorporation of KNN fillers in PVDF at both nano and micrometer scale above 10vol% resulted in the formation of polar β-form of PVDF. The room temperature dielectric constant as high as 3273 at 100Hz was obtained for PVDF comprising 40 vol% KNN nanocrystallites due to dipole –dipole interactions (as the presence of β-PVDF is prominent), whereas it was only 236 for PVDF containing the same amount (40 vol%) of micron sized crystallites of KNN at the same frequency. Various theoretical models were employed to predict the dielectric constants of the PVDF-KNN nano and microcrystal composites. PVDF comprising 70 vol% micronmeter sized crystallites of KNN exhibited d33 value of 35pC/N, while the nanocrystal composites of PVDF-KNN did not exhibit any piezoelectric response perhaps due to unrelieved internal stress within each grain besides having less number of domain walls. The Thesis ends with summary and conclusions, though each chapter is provided with conclusions and a complete list of references.
APA, Harvard, Vancouver, ISO, and other styles
39

Badari, Narayana A. R. "Influence of Electric Field on the Global and Local Structure in the Ferroelectric Ceramic Na1/2Bi1/2TiO3 and its Solid Solutions with BaTiO3 and K1/2Bi1/2TiO3." Thesis, 2015. http://etd.iisc.ernet.in/2005/3966.

Full text
Abstract:
Ferroelectric ceramics are very promising materials for a variety of piezoelectric applications such as high permittivity dielectrics, piezoelectric sensors, piezoelectric/electrostrictive transducers, actuators, electro-optic devices, etc. Among the commercially viable ferroelectric ceramics, the lead-zircon ate-titivate Pb(Zr1-xTix)O3 (PZT) based ceramics have dominated the market due to their superior piezoelectric and dielectric property along with other advantages like high electromechanical coupling, ease of processing and low cost. However, the toxicity of lead based materials, and its volatility at processing temperatures is a serious health and environmental concern. Several legislations against lead-based products have been passed all over the world in order to encourage identification of alternative lead-free materials for these applications. As a consequence, there has been a remarkable surge in efforts by researchers on identifying lead-free alternatives for piezoelectric applications. A larger emphasis has been placed on perovskite based ceramics since in addition to possessing excellent properties, their relatively simple structure facilitates understanding structure-property relationships which are important for developing novel high performance materials. Na1/2Bi1/2TiO3 (NBT) and its solid solutions are one of the leading classes of perovskite ceramics, which show promising ferroelectric, piezoelectric and dielectric property thereby having the potential to replace PZT based ferroelectrics. The parent compound NBT is ferroelectric with large ferroelectric polarization (~40 C/cm2), promising piezoelectric properties with 0.08% maximum strain and longitudinal piezoelectric coefficient (d33) ~ 80 pC/N. Though NBT was discovered nearly six decades ago, a clear understanding of its structure remained elusive for a long time since different characterization techniques yielded contradicting reports on its structure and nature of phase transformation. However, rapid advances in characterization techniques in recent years have led to uncovering of new results, thereby shedding light on the true structure of NBT. X-ray and neutron diffraction studies in the past have shown that NBT exhibits rhombohedral (R3c) structure at room temperature, which undergoes a gradual transformation into tetragonal (P4bm) structure at ~230oC. However, recent characterization of both single crystal and powder of NBT using high resolution x-ray diffraction showed that the room temperature structure is not purely rhombohedral and the structure can be better modeled with a monoclinic (Cc) structure. In contrast to x-ray and neutron diffraction, electron diffraction studies have shown evidence for the presence of planar disorders, corresponding to in-phase octahedral tilts in the sample which cannot be accounted for by either R3c or Cc structure. In addition, EXAFS, x-ray and neutron total scattering studies, diffuse scattering studies, etc. have shown that the structural parameters obtained from bulk diffraction techniques are significantly different from the local structure of the material. Similar ambiguities have been observed even in NBT based solid solutions like BaTiO3, K1/2Bi1/2TiO3, etc. which show enhanced properties at the morphotropic phase boundary (MPB). A major breakthrough in understanding the structural complexity involved in NBT based solid solutions was achieved when it was found that the structure of the MPB compositions were sensitive to electric field. This led to solving the mystery behind the appearance of cubic-like phase at some of the MPB compositions where the application of electric-field resulted in the transformation of the structure into a co-existence of rhombohedral and tetragonal phases. Observation of an electric-field-induced structural transition at the MPB compositions was expected, because the MPB signifies instability in the system and even a minor external force can significantly influence the system. However, we have found that the structure of even pure NBT is significantly influenced by electric field and the framework of this thesis is based on this particularly important result. The intrinsic tendency of the electric field to affect the structure of NBT is a major factor which needs to be considered when studying similar phase transitions in the MPB compositions of NBT-substituted systems also. This was not taken into account by other research groups, and they assumed that the instability associated with the MPB was the only major factor involved in the electric-field induced transitions. A simple but highly effective strategy of grinding the electrically poled pellet into fine powder and then collecting x-ray diffraction patterns, facilitated elimination of preferred orientation in the sample. Thus, structural analysis by Rietveld refinement was possible even on the poled sample, which has not been carried out by any other groups on any ferroelectric ceramics so far. The initial part of the thesis deals with addressing the structural complexity of pure NBT, wherein the effect of electric field on the bulk structure as well as the local structure was studied in great detail. Later on, similar concepts are used to investigate BaTiO3 and K1/2Bi1/2TiO3 substituted NBT also. The first chapter of the thesis provides a brief introduction to the field of ferroelectrics, perovskite structure and their phase transition. An exposure to concepts like relaxor ferroelectrics, morphotrophic phase boundary, octahedral tilting, etc. has been provided. Then, a detailed overview of the existing literature related to the structure of NBT and its phase transition studies with temperature has been discussed. The details of the experimental procedures, characterization techniques used, and some theory behind these techniques have been provided in chapter 2. The third chapter deals with the room temperature structural characterization of pure NBT using techniques like x-ray diffraction, neutron diffraction, electron diffraction and EXAFS analysis. The results of these structural characterizations are also complemented with first-principles calculation study of the ground state structure of NBT, dielectric and ferroelectric characterization, and ageing studies. While x-ray and neutron diffraction clearly established electric-field induced structural transition from a monoclinic (Cc) to rhombohedral (R3c) structural transition, first principles calculation showed that the monoclinic phase is not stable and hence cannot be the ground state structure of NBT. Also, the possibility of the monoclinic features appearing in the x-ray diffraction solely due to micro structural effects by nano-sized domains was discussed. Comparison of electron diffraction of poled and unpoled samples of NBT showed that the in-phase tilted regions were greatly suppressed in the poled samples. Even HRTEM images showed that the unpoled samples had a very high concentration of strain heterogeneity in them, which was absent in the poled samples. This gave a direct evidence of correlation between observation of monoclinic phase and the presence of in-phase tilted regions in the unpoled samples. It was proposed that the strain caused by these in-phase tilted disorders caused distortion in the original rhombohedral lattice thereby making the structure appear monoclinic. Application of electric field causes the in-phase octahedral tilt disorders to vanish, thereby even the monoclinic features observed in the XRD also disappear. The fourth chapter discusses the consequences of poling on the high temperature phase transition behavior of NBT. We have used temperature dependent x-ray and neutron diffraction, Raman spectroscopy and EXAFS analysis whose results were correlated with the anomalies observed in temperature dependent dielectric and polarization studies. We found that the poled sample shows a sharp anomaly at the depolarization temperature (Td) in all the characterization techniques used, in contrast to a diffuse or negligible effect seen in the unpoled sample. The depolarization temperature was found to be associated with introduction of structural disorder in the sample in the form of in-phase octahedral tilts. This also gave rise to a normal to relaxor ferroelectric transition at Td, and this relaxor behavior persisted even after cooling the sample to room temperature. An intermediate cubiclike phase was observed from x-ray diffraction at around 300C wherein the rhombohedral phase vanishes and the tetragonal phase begins to appear. Even single crystal study of NBT in the past showed sudden disappearance of the domains at 300C, even though they were visible at both above and below this temperature. This effect was called isotropization, and was postulated to arise due to extremely small domains which made the system isotropic. However, our neutron diffraction pattern showed that in-phase tilted superlattice reflections persisted at this temperature which meant that the structure was not truly cubic at this temperature. Further, a neutron diffraction study at higher temperatures showed that the in-phase tilted superlattice reflections persisted even above the cubic phase transition temperature, in corroboration with similar reports from high temperature electron diffraction. Chapter five deals with the BaTiO3 substituted NBT system, which has gained tremendous interest in the last decade as a viable piezoelectric ceramic for commercial applications. Though a large number of groups have already carried out exhaustive studies on this system, most of the work concentrated mainly on the MPB compositions which showed enhanced piezoelectric properties. In this chapter, we highlight some important findings in the pre-MPB and post-MPB compositions. Using room-temperature and high temperature x-ray diffraction, we show that there exists a subtle compositional phase boundary at x = 0.03, which disappears upon poling the sample. While the monoclinic phase in pure NBT becomes cubiclike at this composition, the depolarization temperature (Td) also slightly increases up to this composition and then decreases upon further Ba substitution. Similar studies were also carried out with compositions containing slightly excess bismuth in them (0.1 mol %), whose purpose was to negate the effects of Bi-vaporization during sintering. It was found that while the compositional phase boundary remained essentially unchanged, there was a decrease in Td for all the compositions. It was also realized that the addition of excess bismuth improved the overall piezoelectric property of the system. Studies on higher compositions of Ba in the post-MPB regions further revealed two additional compositional phase boundaries. A criticality in the coercive field and spontaneous tetragonal strain was observed at x = 0.2, which was found to be associated with crossover from a long-period modulated tetragonal phase (for x < 0.2) to a no modulated tetragonal phase (for x > 0.2). Near the BT rich end (x ~ 0.7), the system exhibits a crossover from normal to a diffuse/relaxor ferroelectric transition with increasing Na1/2Bi1/2 substitution. The onset of relaxor state by Na1/2Bi1/2 substitution on the Ba-site, was shown to increase the spontaneous tetragonal strain in the system. This was because of the enhancement in the covalent character of the A-O bond by virtue of the Bi+3 6s2 lone pair effect, and it also led to a sudden increase in the tetragonal-to-cubic transition temperature. This was in contrast to other chemical modifications of BT reported in the past (like Zr, Sn, Sr, etc.) where the relaxor state is accompanied by a weakening of the ferroelectric distortion and a decrease in the critical temperature. Finally, chapter six covers the effect of electric field induced phase transition in K1/2Bi1/2TiO3 substituted NBT. Visual observation showed that while the compositions (x < 0.2) behaved similar to pure NBT, wherein the structure became purely rhombohedral upon poling, the effect of electric field was negligible in the post-MPB compositions (x > 0.2). In addition, the peaks in the annealed samples were considerably overlapping which made identifying the structural transitions at the MPB compositions difficult using Rietveld analysis. However, comparison of the FWHM of the {200}pc peaks of compositions x < 0.2 showed that the FWHM began to increase suddenly for x > 0.15 indicating emergence of the tetragonal phase. Also, all the compositions showed an increase in the {200}pc peak FWHM by 0.03 after poling. The depolarization temperature showed only slight variation in the pre-MPB compositions, but showed a minimum at the MPB compositions. Temperature dependent dielectric studies further showed that for the post-MPB compositions, the system remains relaxor even after poling.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography