Journal articles on the topic 'Piezoelectric;energy harvester;mechanical-electrical coupling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Piezoelectric;energy harvester;mechanical-electrical coupling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Perez-Alfaro, Irene, Daniel Gil-Hernandez, Nieves Murillo, and Carlos Bernal. "On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties." Sensors 22, no. 8 (2022): 3080. http://dx.doi.org/10.3390/s22083080.
Full textNiasar, Erfan Hamsayeh Abbasi, Masoud Dahmardeh, and Hamed Saeidi Googarchin. "Roadway piezoelectric energy harvester design considering electrical and mechanical performances." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 1 (2019): 32–48. http://dx.doi.org/10.1177/0954406219873366.
Full textMorel, Adrien, Adrien Badel, Romain Grézaud, Pierre Gasnier, Ghislain Despesse, and Gaël Pillonnet. "Resistive and reactive loads’ influences on highly coupled piezoelectric generators for wideband vibrations energy harvesting." Journal of Intelligent Material Systems and Structures 30, no. 3 (2018): 386–99. http://dx.doi.org/10.1177/1045389x18810802.
Full textLiang, Xu, Runzhi Zhang, Shuling Hu, and Shengping Shen. "Flexoelectric energy harvesters based on Timoshenko laminated beam theory." Journal of Intelligent Material Systems and Structures 28, no. 15 (2017): 2064–73. http://dx.doi.org/10.1177/1045389x16685438.
Full textZhang, XF, KM Hu, and H. Li. "Comparison of flexoelectric and piezoelectric ring energy harvester." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 11 (2018): 3795–803. http://dx.doi.org/10.1177/0954406218806018.
Full textThonapalin, Pornrawee, Sontipee Aimmanee, Pitak Laoratanakul, and Raj Das. "Thermomechanical Effects on Electrical Energy Harvested from Laminated Piezoelectric Devices." Crystals 11, no. 2 (2021): 141. http://dx.doi.org/10.3390/cryst11020141.
Full textHu, Kun, and Min Wang. "Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning." Micromachines 14, no. 1 (2022): 105. http://dx.doi.org/10.3390/mi14010105.
Full textLan, Chunbo, Yabin Liao, Guobiao Hu, and Lihua Tang. "Equivalent impedance and power analysis of monostable piezoelectric energy harvesters." Journal of Intelligent Material Systems and Structures 31, no. 14 (2020): 1697–715. http://dx.doi.org/10.1177/1045389x20930080.
Full textSilva, Luciana L., Marcelo A. Savi, Paulo C. C. Monteiro, and Theodoro A. Netto. "On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters." Shock and Vibration 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/739381.
Full textMalki, Zakaria, Chouaib Ennawaoui, Abdelowahed Hajjaji, Mohamed Eljouad, and Yahia Boughaleb. "Wave Energy Harvesting System Using Piezocomposite Materials." Transactions on Maritime Science 11, no. 1 (2022): 67–78. http://dx.doi.org/10.7225/toms.v11.n01.w11.
Full textXie, Zhengqiu, Shengxi Zhou, Jitao Xiong, and Wenbin Huang. "The benefits of a magnetically coupled asymmetric monostable dual-cantilever energy harvester under random excitation." Journal of Intelligent Material Systems and Structures 30, no. 20 (2019): 3136–45. http://dx.doi.org/10.1177/1045389x19879999.
Full textChen, Qiuxuan, Chong Li, and Mingming Lv. "An Array Magnetic Coupling Piezoelectric and Electromagnetic Energy Harvester for Rotary Excitation." Micromachines 14, no. 8 (2023): 1527. http://dx.doi.org/10.3390/mi14081527.
Full textLiu, Min, Hui Xia, and Guoqiang Liu. "Experimental and numerical study of underwater piezoelectric generator based on Vortex-induced Vibration." Engineering Research Express 3, no. 4 (2021): 045056. http://dx.doi.org/10.1088/2631-8695/ac33f0.
Full textLu, Han, Kairui Chen, Hao Tang, and Weiqun Liu. "Comparison of Four Electrical Interfacing Circuits in Frequency Up-Conversion Piezoelectric Energy Harvesting." Micromachines 13, no. 10 (2022): 1596. http://dx.doi.org/10.3390/mi13101596.
Full textLiu, Jianjun, Xianghua Chen, Yujie Chen, Hong Zuo, and Qun Li. "Experimental Research on Wind-Induced Flag-Swing Piezoelectric Energy Harvesters." Shock and Vibration 2021 (October 7, 2021): 1–8. http://dx.doi.org/10.1155/2021/8496441.
Full textXie, Zhengqiu, Jitao Xiong, Deqi Zhang, Tao Wang, Yimin Shao, and Wenbin Huang. "Design and Experimental Investigation of a Piezoelectric Rotation Energy Harvester Using Bistable and Frequency Up-Conversion Mechanisms." Applied Sciences 8, no. 9 (2018): 1418. http://dx.doi.org/10.3390/app8091418.
Full textSui, Wentao, Huirong Zhang, Chongqiu Yang, Dan Zhang, Rujun Song, and Xiaohui Yang. "Modeling and experimental investigation of magnetically coupling bending-torsion piezoelectric energy harvester based on vortex-induced vibration." Journal of Intelligent Material Systems and Structures 33, no. 9 (2021): 1147–60. http://dx.doi.org/10.1177/1045389x211048229.
Full textNa, Yonghyeon, Min-Seon Lee, Jung Woo Lee, and Young Hun Jeong. "Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications." Energies 14, no. 2 (2021): 498. http://dx.doi.org/10.3390/en14020498.
Full textLiu, Min, Hui Xia, Guoqiang Liu, and Dong Xia. "Ocean energy harvester based on piezoelectric VIV using different oscillators." E3S Web of Conferences 136 (2019): 02017. http://dx.doi.org/10.1051/e3sconf/201913602017.
Full textMorel, Adrien, Alexis Brenes, David Gibus, et al. "A comparative study of electrical interfaces for tunable piezoelectric vibration energy harvesting." Smart Materials and Structures 31, no. 4 (2022): 045016. http://dx.doi.org/10.1088/1361-665x/ac54e8.
Full textRosso, Michele, Alessandro Nastro, Marco Baù, et al. "Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts." Sensors 22, no. 15 (2022): 5911. http://dx.doi.org/10.3390/s22155911.
Full textLien, I. C., Y. C. Lo, S. H. Chiu, and Y. C. Shu. "Comparison between overall and respective electrical rectifications in array of piezoelectric energy harvesting." Journal of Mechanics 38 (2022): 518–30. http://dx.doi.org/10.1093/jom/ufac039.
Full textAlhumaid, Saleh, Daniel Hess, and Rasim Guldiken. "A Noncontact Magneto–Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study." Energies 15, no. 12 (2022): 4476. http://dx.doi.org/10.3390/en15124476.
Full textWang, Lingzhi, Ting Tan, Zhimiao Yan, and Zhitao Yan. "Tapered galloping energy harvester for power enhancement and vibration reduction." Journal of Intelligent Material Systems and Structures 30, no. 18-19 (2019): 2853–69. http://dx.doi.org/10.1177/1045389x19873409.
Full textEgbe, King James, Ali Matin Nazar, and Peng Cheng Jiao. "Magnet-Actuated Piezoelectric Harvester for Energy Harvesting from Fluids." Applied Mechanics and Materials 909 (September 28, 2022): 89–98. http://dx.doi.org/10.4028/p-0y10s0.
Full textTaib, Bibi Nadia, Norhayati Sabani, Chan Buan Fei, Mazlee Mazalan, and Mohd Azarulsani Md Azidin. "Performance Analysis of Varied Dimensions Piezoelectric Energy Harvester." Applied Mechanics and Materials 754-755 (April 2015): 481–88. http://dx.doi.org/10.4028/www.scientific.net/amm.754-755.481.
Full textBatra, Ashok, Almuatasim Alomari, James Sampson, Alak Bandyopadhyay, and Mohan Aggarwal. "Design of a Unique Unimorph and Bimorph Cantilever Energy Harvesting System." Advanced Science, Engineering and Medicine 12, no. 4 (2020): 506–12. http://dx.doi.org/10.1166/asem.2020.2550.
Full textMasoumi, Hamidreza, Hamid Moeenfard, Hamed Haddad Khodaparast, and Michael I. Friswell. "On the Effects of Structural Coupling on Piezoelectric Energy Harvesting Systems Subject to Random Base Excitation." Aerospace 7, no. 7 (2020): 93. http://dx.doi.org/10.3390/aerospace7070093.
Full textWang, Moyang. "Innovative Designs in Vibration Energy Harvesting: Performance Evaluation and Comparative Analysis." Highlights in Science, Engineering and Technology 112 (August 20, 2024): 118–23. http://dx.doi.org/10.54097/tfsx1n66.
Full textShi, Ge, Junfu Chen, Yansheng Peng, et al. "A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique." Micromachines 11, no. 1 (2020): 80. http://dx.doi.org/10.3390/mi11010080.
Full textZhang, Xuhui, Hao Tian, Jianan Pan, et al. "Vibration Characteristics and Experimental Research of an Improved Bistable Piezoelectric Energy Harvester." Applied Sciences 13, no. 1 (2022): 258. http://dx.doi.org/10.3390/app13010258.
Full textJiang, Junxiang, Shaogang Liu, Dan Zhao, and Lifeng Feng. "Broadband power generation of piezoelectric vibration energy harvester with magnetic coupling." Journal of Intelligent Material Systems and Structures 30, no. 15 (2019): 2272–82. http://dx.doi.org/10.1177/1045389x19862642.
Full textLi, Xia, Cheng Bi, Zhiyuan Li, Benxue Liu, Tingting Wang, and Sanchuan Zhang. "A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body." Micromachines 12, no. 6 (2021): 626. http://dx.doi.org/10.3390/mi12060626.
Full textChen, Tingting, Kai Wang, Shengchao Chen, Ziyu Xu, Zhe Li, and Jiaxi Zhou. "Nonlinear electromechanical coupling dynamics of a two-degree-of-freedom hybrid energy harvester." Applied Mathematics and Mechanics 46, no. 6 (2025): 989–1010. https://doi.org/10.1007/s10483-025-3264-7.
Full textZhao, Yue, Yi Qin, Lei Guo, and Baoping Tang. "Modeling and Experiment of a V-Shaped Piezoelectric Energy Harvester." Shock and Vibration 2018 (May 27, 2018): 1–15. http://dx.doi.org/10.1155/2018/7082724.
Full textZhang, Xuhui, Chao Zhang, Lin Wang, et al. "A Method for Parameter Identification of Composite Beam Piezoelectric Energy Harvester." Sensors 21, no. 21 (2021): 7213. http://dx.doi.org/10.3390/s21217213.
Full textLi, Xia, Tongtong Ma, Benxue Liu, Chengming Wang, and Yufeng Su. "Experimental Study on Magnetic Coupling Piezoelectric–Electromagnetic Composite Galloping Energy Harvester." Sensors 22, no. 21 (2022): 8241. http://dx.doi.org/10.3390/s22218241.
Full textAl-Riyami, Mahmood, Issam Bahadur, and Hassen Ouakad. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester." Energies 15, no. 16 (2022): 6097. http://dx.doi.org/10.3390/en15166097.
Full textWang, Hongyan, Jiarui Hu, Gang Sun, and Liying Zou. "Electromechanical Performance Analysis of the Hybrid Piezoelectric-Electromagnetic Energy Harvester under Rotary Magnetic Plucking Excitation." Shock and Vibration 2021 (August 17, 2021): 1–20. http://dx.doi.org/10.1155/2021/9959820.
Full textSingh, Vishal. "Deposition of Energy using Piezoelectric Material and its Application in TPMS." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 4236–41. http://dx.doi.org/10.22214/ijraset.2021.36103.
Full textZhang, XF, and HS Tzou. "Theoretical and experimental studies of a piezoelectric ring energy harvester." Journal of Intelligent Material Systems and Structures 30, no. 7 (2019): 998–1009. http://dx.doi.org/10.1177/1045389x19828479.
Full textFan, Kangqi, Bo Yu, Yingmin Zhu, Zhaohui Liu, and Liansong Wang. "Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester." International Journal of Modern Physics B 31, no. 07 (2017): 1741011. http://dx.doi.org/10.1142/s0217979217410119.
Full textZhang, Xuhui, Wenjuan Yang, Meng Zuo, et al. "An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments." Sensors 18, no. 12 (2018): 4472. http://dx.doi.org/10.3390/s18124472.
Full textZhou, Yong, Shi Li, and Jian Tang. "Performance Research of a Novel Spiral Piezoelectric Harvester." Applied Mechanics and Materials 105-107 (September 2011): 254–58. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.254.
Full textWang, Sihui, Lei Wen, Xiaopeng Gong, Ji Liang, Xinggang Hou, and Feng Hou. "Piezoelectric-Based Energy Conversion and Storage Materials." Batteries 9, no. 7 (2023): 371. http://dx.doi.org/10.3390/batteries9070371.
Full textYang, Weijia, Guannan Hao, Zhinan Li, Shuai Zhang, and Lixin Lu. "Electromechanical behaviors of a PVDF beam-film coupled energy harvester under droplet impact." PLOS ONE 20, no. 4 (2025): e0319751. https://doi.org/10.1371/journal.pone.0319751.
Full textZhao, Dan, Shaogang Liu, Qingtao Xu, Wenyi Sun, Tao Wang, and Qianju Cheng. "Theoretical modeling and analysis of a 2-degree-of-freedom hybrid piezoelectric–electromagnetic vibration energy harvester with a driven beam." Journal of Intelligent Material Systems and Structures 29, no. 11 (2018): 2465–76. http://dx.doi.org/10.1177/1045389x18770870.
Full textJia, Jinda, Xiaobiao Shan, Xingxu Zhang, Tao Xie, and Yaowen Yang. "Equivalent circuit modeling and analysis of aerodynamic vortex-induced piezoelectric energy harvesting." Smart Materials and Structures 31, no. 3 (2022): 035009. http://dx.doi.org/10.1088/1361-665x/ac4ab4.
Full textAbdelkefi, Abdessattar, Muhammad R. Hajj, and Ali H. Nayfeh. "Sensitivity analysis of piezoaeroelastic energy harvesters." Journal of Intelligent Material Systems and Structures 23, no. 13 (2012): 1523–31. http://dx.doi.org/10.1177/1045389x12440752.
Full textPanayanthatta, Namanu, Giacomo Clementi, Merieme Ouhabaz, et al. "Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate." Sensors 24, no. 9 (2024): 2815. http://dx.doi.org/10.3390/s24092815.
Full text