Academic literature on the topic 'Piezoelectric materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piezoelectric materials"
DAMJANOVIC, DRAGAN, NAAMA KLEIN, JIN LI, and VIKTOR POROKHONSKYY. "WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS?" Functional Materials Letters 03, no. 01 (March 2010): 5–13. http://dx.doi.org/10.1142/s1793604710000919.
Full textAli, Fawad, and Muammer Koc. "3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications." Polymers 15, no. 23 (November 21, 2023): 4470. http://dx.doi.org/10.3390/polym15234470.
Full textPark, D. S., M. Hadad, L. M. Riemer, R. Ignatans, D. Spirito, V. Esposito, V. Tileli, et al. "Induced giant piezoelectricity in centrosymmetric oxides." Science 375, no. 6581 (February 11, 2022): 653–57. http://dx.doi.org/10.1126/science.abm7497.
Full textZhang, Zhong Hua, Guang Ming Cheng, Jun Wu Kan, Ping Zeng, and Jian Ming Wen. "The Influence of Multiple Piezoelectric Effects on Elastic Coefficient of Piezoelectric Ceramics." Advanced Materials Research 305 (July 2011): 348–52. http://dx.doi.org/10.4028/www.scientific.net/amr.305.348.
Full textMeng, Yanfang, Genqiang Chen, and Maoyong Huang. "Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications." Nanomaterials 12, no. 7 (April 1, 2022): 1171. http://dx.doi.org/10.3390/nano12071171.
Full textUchino, Kenji. "Piezoelectric Devices in the Sustainable Society." Sustainability in Environment 4, no. 4 (September 11, 2019): p181. http://dx.doi.org/10.22158/se.v4n4p181.
Full textUmer, Usama, Mustufa Haider Abidi, Syed Hammad Mian, Fahad Alasim, and Mohammed K. Aboudaif. "Effects of Silica Nanoparticles on the Piezoelectro-Elastic Response of PZT-7A–Polyimide Nanocomposites: Micromechanics Modeling Technique." Polymers 16, no. 20 (October 10, 2024): 2860. http://dx.doi.org/10.3390/polym16202860.
Full textNoheda, B. "Piezoelectric materials overview." Current Opinion in Solid State and Materials Science 6, no. 1 (February 2002): 9. http://dx.doi.org/10.1016/s1359-0286(02)00022-0.
Full textTwiney, Robert C. "Novel piezoelectric materials." Advanced Materials 4, no. 12 (December 1992): 819–22. http://dx.doi.org/10.1002/adma.19920041213.
Full textRudresha K J, Rudresha K. J., and Girisha G. K. Girisha G K. "Energy Harvesting Using Piezoelectric Materials on Microcantilevr Structure." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 252–55. http://dx.doi.org/10.15373/22778179/may2013/84.
Full textDissertations / Theses on the topic "Piezoelectric materials"
Yang, Xiaomei, and 楊笑梅. "Computational models for piezoelectrics and piezoelectric laminates." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31246217.
Full textCapobianco, Joseph A. Shih Wan Y. Shih Wei-Heng. "Piezoelectric microcantilever serum protein detector /." Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/2993.
Full textGupta, Shashaank. "High Performance Lead--free Piezoelectric Materials." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50959.
Full textPresent work focuses on the development of fundamental understanding of the crystallographic nature, domain structure and domain dynamics of KNN. Since compositions close to x = 0.5 are of primary interest because of their superior piezoelectric activity among other compositions (0 < x < 1), crystallographic and domain structure studies are focused on this region of the phase diagram. KNN random ceramic, textured ceramic and single crystals were synthesized, which in complement to each other help in understanding the behavior of KNN.
K0.5Na0.5NbO3 single crystals grown by the flux method were characterized for their ferroelectric and piezoelectric behavior and dynamical scaling analysis was performed to reveal the origin of their moderate piezoelectric performance. Optical birefringence technique used to reveal the macro level crystallographic nature of x = 0.4, 0.5 and 0.6 crystals suggested them to have monoclinic Mc, monoclinic MA/B and orthorhombic structures respectively. Contrary to that, pair distribution function analysis performed on same composition crystals implies them to belonging to monoclinic Mc structure at local scale. Linear birefringence and piezoresponse force microscopy (PFM) were used to reveal the domain structure at macro and micros scales respectively.
A noble sintering technique was developed to achieve > 99% density for KNN ceramics. These high density ceramics were characterized for their dielectric, ferroelectric and piezoelectric properties. A significant improvement in different piezoelectric coefficients of these ceramics validates the advantages of this sintering technique. Also lower defect levels in these high density ceramics lead to the superior ferroelectric fatigue behavior as well. To understand the role of seed crystals in switching behavior of textured ceramic, highly textured KNN ceramics (Lotgering factor ~ 88 %) were synthesized using TGG method. A sintering technique similar to one employed for random ceramics, was used to sinter textured KNN ceramics as well. Piezoresponse force microscopy (PFM) study suggested these textured ceramics to have about 6¼m domains as compared to 2¼m domain size for random ceramics. Local switching behavior studied using switching spectroscopy (SS-PFM) revealed about two and half time improvement of local piezoresponse as compared to random counterpart.
Ph. D.
Shen, Zuyan Shih Wan Y. Shih Wei-Heng. "Synthesis, fabrication, and characterization of self-exciting, self-sensing PZT/SiO2 piezoelectric micro-cantilever sensors /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1227.
Full textWilson, Stephen A. "Electric-field structuring of piezoelectric composite materials." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/3373.
Full textRozenburg, Keith Gregory. "Processing study of fine grained piezoelectric materials." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/18948.
Full textGoetzee-Barral, Anton. "Local structure of NBT-based piezoelectric materials." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21342/.
Full textWegert, Zach. "Analysis and optimisation of periodic piezoelectric materials." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232770/1/Zachary_Wegert_Thesis.pdf.
Full textBoldrini, Claudia <1978>. "Mixed Mode Fracture Behaviour of Piezoelectric Materials." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3109/1/Boldrini_Claudia_Tesi.pdf.
Full textBoldrini, Claudia <1978>. "Mixed Mode Fracture Behaviour of Piezoelectric Materials." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3109/.
Full textBooks on the topic "Piezoelectric materials"
Bhalla, Suresh, Sumedha Moharana, Visalakshi Talakokula, and Naveet Kaur. Piezoelectric Materials. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119265139.
Full textSingh, N. B., and Dev Kumar Mahato. Piezoelectric Materials. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978.
Full textDineva, Petia, Dietmar Gross, Ralf Müller, and Tsviatko Rangelov. Dynamic Fracture of Piezoelectric Materials. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03961-9.
Full textBowen, Christopher R., Vitaly Yu Topolov, and Hyunsun Alicia Kim. Modern Piezoelectric Energy-Harvesting Materials. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29143-7.
Full textG, Nelson Wesley, ed. Piezoelectric materials: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textJordan, T. L. Piezoelectric ceramics characterization. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Find full textParinov, Ivan A. Piezoelectrics and related materials: Investigations and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textKermani, Mehrdad R. Applied vibration suppression using piezoelectric materials. New York: Nova Science Publishers, 2008.
Find full textWu, Jiagang. Advances in Lead-Free Piezoelectric Materials. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8998-5.
Full text(Firm), Knovel, ed. Advanced piezoelectric materials: Science and technology. Cambridge, UK: Woodhead Publishing, 2010.
Find full textBook chapters on the topic "Piezoelectric materials"
Lopes, Vicente, and Clayton Rodrigo Marqui. "Piezoelectric Materials." In Dynamics of Smart Systems and Structures, 135–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_7.
Full textGagnepain, J. J. "Piezoelectric Materials." In Ultrasonic Methods in Evaluation of Inhomogeneous Materials, 243–62. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3575-4_18.
Full textVinson, Jack R. "Piezoelectric Materials." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 379–83. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_18.
Full textDineva, Petia, Dietmar Gross, Ralf Müller, and Tsviatko Rangelov. "Piezoelectric Materials." In Dynamic Fracture of Piezoelectric Materials, 7–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03961-9_2.
Full textTichý*, Jan, Jiří Erhart, Erwin Kittinger*, and Jana Přívratská. "Piezoelectric Materials." In Fundamentals of Piezoelectric Sensorics, 119–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68427-5_7.
Full textBrockmann, T. H. "Piezoelectric Materials." In Theory of Adaptive Fiber Composites, 41–67. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2435-0_4.
Full textHwu, Chyanbin. "Piezoelectric Materials." In Anisotropic Elastic Plates, 369–410. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_11.
Full textBehera, Ajit. "Piezoelectric Materials." In Advanced Materials, 43–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80359-9_2.
Full textJahan, Most Israt, Mehedi Hasan Jihad, Salahuddin Ammar, and Md Abu Bin Hasan Susan. "Application-Oriented Materials Development: High-Power Piezoelectric Materials." In Piezoelectric Materials, 291–340. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978-11.
Full textMusa, Neksumi, Mubarak Dahiru, and N. B. Singh. "3D Printed Piezoelectric Energy Harvesters: Materials, 3D Printing Techniques, and Applications." In Piezoelectric Materials, 617–75. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978-20.
Full textConference papers on the topic "Piezoelectric materials"
Shen, Xin, Chunhua Zhou, and Yipeng Wu. "Synchronous switches based piezoelectric shunting circuits and piezoelectric energy control." In International Conference on New Materials, Machinery, and Vehicle Engineering 2024, edited by Jinyang Xu and J. Paulo Davim, 26. SPIE, 2024. http://dx.doi.org/10.1117/12.3054962.
Full textSyed, Fahmidul Huq, Li Wah Thong, and Yee Kit Chan. "Effect of Beam Configuration and Piezoelectric Materials on a Cantilever-Based Piezoelectric EH." In 2024 Multimedia University Engineering Conference (MECON), 1–6. IEEE, 2024. https://doi.org/10.1109/mecon62796.2024.10776084.
Full textKang, Byung-Woo, Jaehwan Kim, ChaeCheon Cheong, and Bo-Won Yang. "Precision piezoelectric stepping motor using piezoelectric torsional actuator." In Smart Materials and MEMS, edited by Dinesh K. Sood, Ronald A. Lawes, and Vasundara V. Varadan. SPIE, 2001. http://dx.doi.org/10.1117/12.420876.
Full textNguyen, Minh D., Koray Karakaya, Paul te Riele, Dave H. A. Blank, and Gnus Rijnders. "Piezoelectric materials for MEMS applications." In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484342.
Full textPark, Seungbae, and Chin-Teh Sun. "Crack extension in piezoelectric materials." In 1994 North American Conference on Smart Structures and Materials, edited by Vijay K. Varadan. SPIE, 1994. http://dx.doi.org/10.1117/12.174071.
Full textJanocha, Hartmut, Daniel J. Jendritza, and Peter Scheer. "Smart actuators with piezoelectric materials." In 3rd International Conference on Intelligent Materials, edited by Pierre F. Gobin and Jacques Tatibouet. SPIE, 1996. http://dx.doi.org/10.1117/12.237024.
Full textShrout, Thomas R., Seung Eek E. Park, Clive A. Randall, Joseph Shepard, Laurie B. Hackenberger, Dave J. Pickrell, and Wesley S. Hackenberger. "Recent advances in piezoelectric materials." In Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, edited by Alex Hariz, Vijay K. Varadan, and Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293509.
Full textSong, Jae-Sung, Soon-Jong Jeong, Min-Soo Kim, and In-Sung Kim. "Dielectric and piezoelectric properties of a piezoelectric complex for micro-power harvesting." In Smart Materials IV. SPIE, 2006. http://dx.doi.org/10.1117/12.695147.
Full textBoles, Jessica D., Pedro L. Acosta, Yogesh K. Ramadass, Jeffrey H. Lang, and David J. Perreault. "Evaluating Piezoelectric Materials for Power Conversion." In 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2020. http://dx.doi.org/10.1109/compel49091.2020.9265723.
Full textNakaya, C., H. Takeuchi, K. Katakura, and A. Sakamoto. "Ultrasonic Probe Using Composite Piezoelectric Materials." In IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198587.
Full textReports on the topic "Piezoelectric materials"
Creighton, Steven, Peter W. Chung, and John D. Clayton. Multiscale Modeling of Piezoelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada494112.
Full textCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels, and Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada597296.
Full textJINGTING, ZHANG. Further development of innovative applications based on the inverse piezoelectric effect. Intellectual Archive, March 2024. http://dx.doi.org/10.32370/iaj.3051.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250889.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250890.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 3. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250891.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 4. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250892.
Full textKhafizov, Marat, Ryan Chesser, Maha Yazbeck, Yuzhou Wang, Gaofeng Sha, Aleksandr Chernatynskiy, and Joshua Daw. Irradiation Behavior of Piezoelectric Materials for Nuclear Reactor Sensors. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1972141.
Full textPANARIN, IGOR. Further development of innovative applications based on the inverse piezoelectric effect. Intellectual Archive, February 2024. http://dx.doi.org/10.32370/iaj.3031.
Full textYoshikawa, Shoko, and S. K. Kurtz. Passive Vibration Damping Materials: Piezoelectric Ceramics Composites for Vibration Damping Applications. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada260792.
Full text