To see the other types of publications on this topic, follow the link: Piezoelectric nanogenerators.

Journal articles on the topic 'Piezoelectric nanogenerators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Piezoelectric nanogenerators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Amangeldinova, Yerkezhan, Dimaral Aben, Xiaoting Ma, Heesang Ahn, Kyujung Kim, Dong-Myeong Shin, and Yoon-Hwae Hwang. "Enhancing Electrical Outputs of Piezoelectric Nanogenerators by Controlling the Dielectric Constant of ZnO/PDMS Composite." Micromachines 12, no. 6 (May 28, 2021): 630. http://dx.doi.org/10.3390/mi12060630.

Full text
Abstract:
Structural optimizations of the piezoelectric layer in nanogenerators have been predicted to enhance the output performance in terms of the figure of merit. Here, we report the effect of dielectric constant on electrical outputs of piezoelectric nanogenerator using ZnO/PDMS composites with varied ZnO coverages. The dielectric constant of piezoelectric layers was adjusted from 3.37 to 6.75. The electrical output voltage of 9 mV was achieved in the nanogenerator containing the ZnO/PDMS composite with the dielectric constant of 3.46, which is an 11.3-fold enhancement compared to the value of the nanogenerator featuring the composite with high dielectric constants. Significantly, lowering the dielectric constant of the piezoelectric layer improves the electrical output performance of piezoelectric nanogenerators.
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Yijing, Yongju Deng, and Hongyan Qi. "Microstructure Dependence of Output Performance in Flexible PVDF Piezoelectric Nanogenerators." Polymers 13, no. 19 (September 24, 2021): 3252. http://dx.doi.org/10.3390/polym13193252.

Full text
Abstract:
Flexible piezoelectric nanogenerators have attracted great attention due to their ability to convert ambient mechanical energy into electrical energy for low-power wearable electronic devices. Controlling the microstructure of the flexible piezoelectric materials is a potential strategy to enhance the electrical outputs of the piezoelectric nanogenerator. Three types of flexible polyvinylidene fluoride (PVDF) piezoelectric nanogenerator were fabricated based on well-aligned nanofibers, random oriented nanofibers and thick films. The electrical output performance of PVDF nanogenerators is systematically investigated by the influence of microstructures. The aligned nanofiber arrays exhibit highly consistent orientation, uniform diameter, and a smooth surface, which possesses the highest fraction of the polar crystalline β phase compared with the random-oriented nanofibers and thick films. The highly aligned structure and the large fraction of the polar β phase enhanced the output performance of the well-aligned nanofiber nanogenerator. The highest output voltage of 14 V and a short-circuit current of 1.22 µA were achieved under tapping mode of 10 N at 2.5 Hz, showing the potential application in flexible electronic devices. These new results shed some light on the design of the flexible piezoelectric polymer-based nanogenerators.
APA, Harvard, Vancouver, ISO, and other styles
3

Mishra, Siju, P. Supraja, Vishnu V. Jaiswal, P. Ravi Sankar, R. Rakesh Kumar, K. Prakash, K. Uday Kumar, and D. Haranath. "Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure." Engineering Research Express 3, no. 4 (November 15, 2021): 045022. http://dx.doi.org/10.1088/2631-8695/ac34c3.

Full text
Abstract:
Abstract We report a double-fold enhancement of piezoelectric nanogenerator output voltage with a simple design strategy. The piezoelectric nanogenerator is fabricated with ZnO nanosheets coated on both sides of the aluminum substrate in this new design strategy with necessary electrodes. The cost-effective hydrothermal method is employed to synthesize two-dimensional (2D) ZnO nanosheets on both sides of the aluminum substrate at a low growth temperature of 80 °C for 4 h. The ZnO nanosheets were characterized for their morphology, crystallinity, and photoluminescence property. The performance of nanogenerator fabricated with double-side coated aluminum substrate was compared to single-side coated aluminum substrate. The nanogenerators fabricated only with one side coating produced an output voltage of ∼170 mV. In contrast, the nanogenerators fabricated with double side coating produced an output voltage of ∼285 mV. The nanogenerator with double-side coating produced ∼1.7 times larger output voltage than that of single-side coated one. The enhancement in the output voltage is mainly due to ZnO nanosheet deformation along both sides and the electric field-induced synergetic effect between two front and back sides of piezoelectric nanogenerators. This nanogenerator fabrication technology has the potential to be scaled up for industrial production of piezoelectric energy collecting devices because of its simplicity and high output gain.
APA, Harvard, Vancouver, ISO, and other styles
4

Sheng, Jian Guo, Ping Zeng, and Can Can Zhang. "Study of the Manufacture about Piezoelectric Nanogenerator under Micro Vibration and its Performance." Applied Mechanics and Materials 105-107 (September 2011): 2109–12. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.2109.

Full text
Abstract:
With the development of science and technology, the smaller sizes generator, the more attention by people. The main purpose of this article is to manufacture piezoelectric nanogenerator under micro vibration and its working principle is introduced and its performance is studied. The results show that, using the present nanomaterials, piezoelectric materials can be prepared. When its wind in copper laps, under the situation of micro pulse vibration its can turn into electrical energy, thus yield piezoelectric nanogenerators. In ambient vibration condition, piezoelectric materials produce larger rated current and voltage. However, copper laps cutting magnetic line of force produce less rated current and voltage. So the piezoelectric nanogenerators can be separately used to supply power. If multiple piezoelectric nanogenerator in tandem may produce higher voltage, current and power, which possess commercial value.
APA, Harvard, Vancouver, ISO, and other styles
5

Blanquer, Andreu, Oriol Careta, Laura Anido-Varela, Aida Aranda, Elena Ibáñez, Jaume Esteve, Carme Nogués, and Gonzalo Murillo. "Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators." International Journal of Molecular Sciences 23, no. 1 (December 31, 2021): 432. http://dx.doi.org/10.3390/ijms23010432.

Full text
Abstract:
Nanogenerators are interesting for biomedical applications, with a great potential for electrical stimulation of excitable cells. Piezoelectric ZnO nanosheets present unique properties for tissue engineering. In this study, nanogenerator arrays based on ZnO nanosheets are fabricated on transparent coverslips to analyse the biocompatibility and the electromechanical interaction with two types of muscle cells, smooth and skeletal. Both cell types adhere, proliferate and differentiate on the ZnO nanogenerators. Interestingly, the amount of Zn ions released over time from the nanogenerators does not interfere with cell viability and does not trigger the associated inflammatory response, which is not triggered by the nanogenerators themselves either. The local electric field generated by the electromechanical nanogenerator–cell interaction stimulates smooth muscle cells by increasing cytosolic calcium ions, whereas no stimulation effect is observed on skeletal muscle cells. The random orientation of the ZnO nanogenerators, avoiding an overall action potential aligned along the muscle fibre, is hypothesised to be the cause of the cell-type dependent response. This demonstrates the need of optimizing the nanogenerator morphology, orientation and distribution according to the potential biomedical use. Thus, this study demonstrates the cell-scale stimulation triggered by biocompatible piezoelectric nanogenerators without using an external source on smooth muscle cells, although it remarks the cell type-dependent response.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Xinran, Kaushik Parida, Oded Halevi, Shlomo Magdassi, and Pooi See Lee. "All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application." Sensors 20, no. 23 (November 26, 2020): 6748. http://dx.doi.org/10.3390/s20236748.

Full text
Abstract:
With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide–polymer composites.
APA, Harvard, Vancouver, ISO, and other styles
7

Pabba, Durga Prasad, Mani Satthiyaraju, Ananthakumar Ramasdoss, Pandurengan Sakthivel, Natarajan Chidhambaram, Shanmugasundar Dhanabalan, Carolina Venegas Abarzúa, et al. "MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications." Micromachines 14, no. 6 (June 20, 2023): 1273. http://dx.doi.org/10.3390/mi14061273.

Full text
Abstract:
Due to its superior advantages in terms of electronegativity, metallic conductivity, mechanical flexibility, customizable surface chemistry, etc., 2D MXenes for nanogenerators have demonstrated significant progress. In order to push scientific design strategies for the practical application of nanogenerators from the viewpoints of the basic aspect and recent advancements, this systematic review covers the most recent developments of MXenes for nanogenerators in its first section. In the second section, the importance of renewable energy and an introduction to nanogenerators, major classifications, and their working principles are discussed. At the end of this section, various materials used for energy harvesting and frequent combos of MXene with other active materials are described in detail together with the essential framework of nanogenerators. In the third, fourth, and fifth sections, the materials used for nanogenerators, MXene synthesis along with its properties, and MXene nanocomposites with polymeric materials are discussed in detail with the recent progress and challenges for their use in nanogenerator applications. In the sixth section, a thorough discussion of the design strategies and internal improvement mechanisms of MXenes and the composite materials for nanogenerators with 3D printing technologies are presented. Finally, we summarize the key points discussed throughout this review and discuss some thoughts on potential approaches for nanocomposite materials based on MXenes that could be used in nanogenerators for better performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Weiping, Yupeng Zhang, and Chunxu Pan. "Graphene-based Nanogenerator: Experiments, Theories and Applications." MRS Proceedings 1782 (2015): 15–21. http://dx.doi.org/10.1557/opl.2015.677.

Full text
Abstract:
ABSTRACTIn addition to the piezoelectric nanogenerators and triboelectric nanogenerators, recently, the graphene-based nanogenerator has been widely concerned because of its simple assembly, flexibility and high structural stability. There are many interesting effects in graphene applied for nanogenenrators including anion adsorption in electrolyte solution, ion channels in graphene sheets network and the strain (band engineering) effect, etc. In this paper, we focus explicitly on the experimental results, mechanisms and applications of the graphene-based nanogenerator, and introduce our recent research on the graphene-based nanogenerator based on "modulation of the graphene strain-energy band effect". This nanogenerator is expected to have potential applications in active sensors and sustainable power source.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Zhao, Xumin Pan, Yahua He, Yongming Hu, Haoshuang Gu, and Yu Wang. "Piezoelectric Nanowires in Energy Harvesting Applications." Advances in Materials Science and Engineering 2015 (2015): 1–21. http://dx.doi.org/10.1155/2015/165631.

Full text
Abstract:
Recently, the nanogenerators which can convert the mechanical energy into electricity by using piezoelectric one-dimensional nanomaterials have exhibited great potential in microscale power supply and sensor systems. In this paper, we provided a comprehensive review of the research progress in the last eight years concerning the piezoelectric nanogenerators with different structures. The fundamental piezoelectric theory and typical piezoelectric materials are firstly reviewed. After that, the working mechanism, modeling, and structure design of piezoelectric nanogenerators were discussed. Then the recent progress of nanogenerators was reviewed in the structure point of views. Finally, we also discussed the potential application and future development of the piezoelectric nanogenerators.
APA, Harvard, Vancouver, ISO, and other styles
10

Elvira-Hernández, Ernesto A., Juan C. Anaya-Zavaleta, Eustaquio Martínez-Cisneros, Francisco López-Huerta, Luz Antonio Aguilera-Cortés, and Agustín L. Herrera-May. "Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices." Micromachines 11, no. 9 (September 17, 2020): 860. http://dx.doi.org/10.3390/mi11090860.

Full text
Abstract:
Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 μm thickness) and substrate (125 μm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler–Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in y-direction of 2.50 m/s2 and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 μW and 82.36 W/m3, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.
APA, Harvard, Vancouver, ISO, and other styles
11

Rafique, Sumera, Ajab Khan Kasi, Jafar Khan Kasi, Aminullah, Muzamil Bokhari, and Zafar Shakoor. "Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system." Nanomaterials and Nanotechnology 10 (January 1, 2020): 184798041989574. http://dx.doi.org/10.1177/1847980419895741.

Full text
Abstract:
Textile-based piezoelectric nanogenerator generates electrical energy from human motion. Here a novel type of textile-based piezoelectric nanogenerator is reported which is fabricated using the growth of silver-doped zinc oxide on carton fabric. Along with the optical and structural characterization of silver-doped zinc oxide nanorods, the electrical characterization was also performed for silver-doped zinc oxide piezoelectric nanogenerator. The silver-doped zinc oxide piezoelectric nanogenerator was found to generate three times greater power compared to undoped zinc oxide piezoelectric nanogenerator. By applying external mechanical force of 3 kgf and 31 MΩ of load resistance, the silver-doped zinc oxide piezoelectric nanogenerator generated an output power density of 1.45 mW cm−2. The effect of load resistance and load capacitor was determined and optimum values were calculated. The maximum output power was observed at a load resistance of 31 MΩ. The silver-doped zinc oxide piezoelectric nanogenerator was utilized to charge load capacitors and found that maximum energy could be stored at optimum load capacitance of 22 nF in 600 s (1800 cycles). This research may provide the opportunity to design high-output textile-based nanogenerators for practical applications like powering portable devices and sensors.
APA, Harvard, Vancouver, ISO, and other styles
12

Du, Yuhang, Gang Jian, Chen Zhang, and Fengwei Wang. "Coral-like BaTiO3-Filled Polymeric Composites as Piezoelectric Nanogenerators for Movement Sensing." Polymers 15, no. 15 (July 27, 2023): 3191. http://dx.doi.org/10.3390/polym15153191.

Full text
Abstract:
Piezoelectric nanogenerators have prospective uses for generating mechanical energy and powering electronic devices due to their high output and flexible behavior. In this research, the synthesis of the three-dimensional coral-like BaTiO3 (CBT) and its filling into a polyvinylidene fluoride (PVDF) matrix to obtain composites with excellent energy harvesting properties are reported. The CBT-based PENG has a 163 V voltage and a 16.7 µA current at a frequency of 4 Hz with 50 N compression. Simulations show that the high local stresses in the CBT coral branch structure are the main reason for the improved performance. The piezoelectric nanogenerator showed good durability at 5000 cycles, and 50 commercial light-emitting diodes were turned on. The piezoelectric nanogenerator generates a voltage of 4.68–12 V to capture the energy generated by the ball falling from different heights and a voltage of ≈0.55 V to capture the mechanical energy of the ball’s movement as it passes. This study suggests a CBT-based piezoelectric nanogenerator for potential use in piezoelectric sensors that has dramatically improved energy harvesting characteristics.
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Wei, Yunlai Shi, Zhijun Sun, and Li Zhang. "Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting." Micromachines 13, no. 6 (May 31, 2022): 889. http://dx.doi.org/10.3390/mi13060889.

Full text
Abstract:
Polylactide-based piezoelectric nanogenerators were designed and fabricated with improved piezoelectric performances by blending polylactide with hydroxyapatite. The addition of hydroxyapatite significantly improves the crystallinity of polylactide and helps to form hydrogen bonds, which further improved the piezoelectric output performance of these piezoelectric nanogenerators with over three times the open circuit voltage compared with that of pure-polylactide-based devices. Such excellent piezoelectricity of hydroxyapatite/polylactide-based nanogenerators give them great potential for energy harvesting fields.
APA, Harvard, Vancouver, ISO, and other styles
14

XU, Qi, Long GU, and Yong QIN. "Flexible piezoelectric nanogenerators." Chinese Science Bulletin 61, no. 12 (August 18, 2015): 1288–97. http://dx.doi.org/10.1360/n972015-00724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dallacasa, V. "Enhanced Size-Dependent Piezoelectricity in Nanostructured Films." ISRN Materials Science 2012 (May 8, 2012): 1–5. http://dx.doi.org/10.5402/2012/894072.

Full text
Abstract:
We have developed a nanogenerator that is driven by mechanical forces to produce continuous direct-current output. The nanogenerator was fabricated with titanium dioxide nanoparticle arrays forming a Schottky barrier with a conducting electrode with a small gap. Under uniaxial mechanical compression, nanogenerators have shown repeatable and consistent electrical outputs with energy-conversion efficiency of order of magnitude at least comparable to similar nanogenerators based on piezoelectric materials. Flexoelectricity due to inhomogeneous strain induced in the nanostructured film has been identified as one possible mechanism of the high apparent piezoelectricity in the nanoparticles. The approach presents an adaptable, mobile, and cost-effective technology for harvesting mechanical energy from the environment. At the present stage it offers a potential solution for powering nanodevices.
APA, Harvard, Vancouver, ISO, and other styles
16

Jang, Hye-Jeong, Daniel Manaye Tiruneh, Hanjun Ryu, and Jeong-Kee Yoon. "Piezoelectric and Triboelectric Nanogenerators for Enhanced Wound Healing." Biomimetics 8, no. 7 (November 1, 2023): 517. http://dx.doi.org/10.3390/biomimetics8070517.

Full text
Abstract:
Wound healing is a highly orchestrated biological process characterized by sequential phases involving inflammation, proliferation, and tissue remodeling, and the role of endogenous electrical signals in regulating these phases has been highlighted. Recently, external electrostimulation has been shown to enhance these processes by promoting cell migration, extracellular matrix formation, and growth factor release while suppressing pro-inflammatory signals and reducing the risk of infection. Among the innovative approaches, piezoelectric and triboelectric nanogenerators have emerged as the next generation of flexible and wireless electronics designed for energy harvesting and efficiently converting mechanical energy into electrical power. In this review, we discuss recent advances in the emerging field of nanogenerators for harnessing electrical stimulation to accelerate wound healing. We elucidate the fundamental mechanisms of wound healing and relevant bioelectric physiology, as well as the principles underlying each nanogenerator technology, and review their preclinical applications. In addition, we address the prominent challenges and outline the future prospects for this emerging era of electrical wound-healing devices.
APA, Harvard, Vancouver, ISO, and other styles
17

Minhas, Jabir Zamir, Md Al Mahadi Hasan, and Ya Yang. "Ferroelectric Materials Based Coupled Nanogenerators." Nanoenergy Advances 1, no. 2 (November 25, 2021): 131–80. http://dx.doi.org/10.3390/nanoenergyadv1020007.

Full text
Abstract:
Innovations in nanogenerator technology foster pervading self-power devices for human use, environmental surveillance, energy transfiguration, intelligent energy storage systems, and wireless networks. Energy harvesting from ubiquitous ambient mechanical, thermal, and solar energies by nanogenerators is the hotspot of the modern electronics research era. Ferroelectric materials, which show spontaneous polarization, are reversible when exposed to the external electric field, and are responsive to external stimuli of strain, heat, and light are promising for modeling nanogenerators. This review demonstrates ferroelectric material-based nanogenerators, practicing the discrete and coupled pyroelectric, piezoelectric, triboelectric, and ferroelectric photovoltaic effects. Their working mechanisms and way of optimizing their performances, exercising the conjunction of effects in a standalone device, and multi-effects coupled nanogenerators are greatly versatile and reliable and encourage resolution in the energy crisis. Additionally, the expectancy of productive lines of future ensuing and propitious application domains are listed.
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Yifei, Ning Wang, and Xia Cao. "From Triboelectric Nanogenerator to Hybrid Energy Harvesters: A Review on the Integration Strategy toward High Efficiency and Multifunctionality." Materials 16, no. 19 (September 26, 2023): 6405. http://dx.doi.org/10.3390/ma16196405.

Full text
Abstract:
The rapid development of smart devices and electronic products puts forward higher requirements for power supply components. As a promising solution, hybrid energy harvesters that are based on a triboelectric nanogenerator (HEHTNG) show advantages of both high energy harvesting efficiency and multifunctionality. Aiming to systematically elaborate the latest research progress of a HEHTNG, this review starts by introducing its working principle with a focus on the combination of triboelectric nanogenerators with various other energy harvesters, such as piezoelectric nanogenerators, thermoelectric/pyroelectric nanogenerators, solar cells, and electromagnetic nanogenerators. While the performance improvement and integration strategies of HEHTNG toward environmental energy harvesting are emphasized, the latest applications of HEHTNGs as multifunctional sensors in human health detection are also illustrated. Finally, we discuss the main challenges and prospects of HEHTNGs, hoping that this work can provide a clear direction for the future development of intelligent energy harvesting systems for the Internet of Things.
APA, Harvard, Vancouver, ISO, and other styles
19

MA, Yanran, Yongfa WANG, Li LI, and Chunchang WANG. "Efficient bio-assembled nanogenerator fabricated from chicken bone epidermis." Research and Application of Materials Science 4, no. 1 (June 30, 2022): 24. http://dx.doi.org/10.33142/rams.v4i1.8460.

Full text
Abstract:
Using biological self-powered materials as a new energy source to replace traditional batteries to power micro-electronic devices is a current research hotspot. We herein fabricate a piezoelectric bio-nanogenerator from chicken bones. The nanogenerator can output a voltage of 1.25 V and a current of 9 nA after being subjected to a pressure of 30 N. This research facilitates an in-depth understanding of bio-nanogenerators and provides a new strategy for reusing bio-waste.
APA, Harvard, Vancouver, ISO, and other styles
20

HWANG, Yoon-Hwae. "Piezoelectricity and Flexoelectricity from an Energy Harvesting Perspective: Nanogenerators." Physics and High Technology 30, no. 9 (September 30, 2021): 11–15. http://dx.doi.org/10.3938/phit.30.027.

Full text
Abstract:
Energy harvesting is the process by which energy can be obtained from external sources and used for wearable electronics and wireless sensor networks. Piezoelectric nanogenerators are energy harvesting devices that convert mechanical energy into electric energy by using nanostructured materials. This article summarizes work to date on piezoelectric nanogenerators, starting with the basic theory of piezo- and flexo-electricity and moving through reports on nanogenerators using nanostructures, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power sources or strain sensors of highly integrated nanodevices. Further improvements in nanogenerators holds promise for the development of self-powered implantable and wearable electronics.
APA, Harvard, Vancouver, ISO, and other styles
21

Jian, Gang, Ning Yang, Shangtao Zhu, Qingzhen Meng, and Chun Ouyang. "A Mousepad Triboelectric-Piezoelectric Hybrid Nanogenerator (TPHNG) for Self-Powered Computer User Behavior Monitoring Sensors and Biomechanical Energy Harvesting." Polymers 15, no. 11 (May 26, 2023): 2462. http://dx.doi.org/10.3390/polym15112462.

Full text
Abstract:
Hybrid nanogenerators based on the principle of surface charging of functional films are significant in self-powering sensing and energy conversion devices due to their multiple functions and high conversion efficiency, although applications remain limited due to a lack of suitable materials and structures. Here, we investigate a triboelectric-piezoelectric hybrid nanogenerator (TPHNG) in the form of a mousepad for computer user behavior monitoring and energy harvesting. Triboelectric and piezoelectric nanogenerators with different functional films and structures work independently to detect sliding and pressing movements, and the profitable coupling between the two nanogenerators leads to enhanced device outputs/sensitivity. Different mouse operations such as clicking, scrolling, taking-up/putting-down, sliding, moving rate, and pathing can be detected by the device via distinguishable patterns of voltage ranging from 0.6 to 36 V. Based on operation recognition, human behavior monitoring is realized, with monitoring of tasks such as browsing a document and playing a computer game being successfully demonstrated. Energy harvesting from mouse sliding, patting, and bending of the device is realized with output voltages up to 37 V and power up to 48 μW while exhibiting good durability up to 20,000 cycles. This work presents a TPHNG utilizing surface charging for self-powered human behavior sensing and biomechanical energy harvesting.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Can Can, Jian Guo Sheng, and Ping Zeng. "Study of the Manufacture about Nanogenerators and their Performance." Advanced Materials Research 465 (February 2012): 86–90. http://dx.doi.org/10.4028/www.scientific.net/amr.465.86.

Full text
Abstract:
With the development of science and technology, the smaller sizes generator, the more attention by people. The main purpose of this article is to manufacture three-phase nanogenerator and piezoelectric nanogenerator under vibration, and their working principle are introduced and their performances are studied. The results show that, using the present nanomaterials, three-phase nanogenerator and piezoelectric nanogenerator can be prepared. In ambient vibration condition, piezoelectric materials produce larger rated current and voltage. However, copper laps cutting magnetic line of force produce less rated current and voltage. So the piezoelectric nanogenerator can be separately used to supply power. It may produce higher voltage, current and power if three-phase nanogenerator and piezoelectric nanogenerator in series-parallel connection, and there is commercial value.
APA, Harvard, Vancouver, ISO, and other styles
23

Hajra, Sugato, Yumi Oh, Manisha Sahu, Kyungtaek Lee, Hang-Gyeom Kim, Basanta Kumar Panigrahi, Krystian Mistewicz, and Hoe Joon Kim. "Piezoelectric nanogenerator based on flexible PDMS–BiMgFeCeO6 composites for sound detection and biomechanical energy harvesting." Sustainable Energy & Fuels 5, no. 23 (2021): 6049–58. http://dx.doi.org/10.1039/d1se01587g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Park, Hyojin, Chihyeon Ha, and Ju-Hyuck Lee. "Advances in piezoelectric halide perovskites for energy harvesting applications." Journal of Materials Chemistry A 8, no. 46 (2020): 24353–67. http://dx.doi.org/10.1039/d0ta08780g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Abubakar, Shamsu, Sin Tee Tan, Josephine Ying Chyi Liew, Zainal Abidin Talib, Ramsundar Sivasubramanian, Chockalingam Aravind Vaithilingam, Sridhar Sripadmanabhan Indira, et al. "Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators." Nanomaterials 13, no. 6 (March 13, 2023): 1025. http://dx.doi.org/10.3390/nano13061025.

Full text
Abstract:
Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
APA, Harvard, Vancouver, ISO, and other styles
26

Delgado-Alvarado, Enrique, Jaime Martínez-Castillo, Luis Zamora-Peredo, Jose Amir Gonzalez-Calderon, Ricardo López-Esparza, Muhammad Waseem Ashraf, Shahzadi Tayyaba, and Agustín L. Herrera-May. "Triboelectric and Piezoelectric Nanogenerators for Self-Powered Healthcare Monitoring Devices: Operating Principles, Challenges, and Perspectives." Nanomaterials 12, no. 24 (December 9, 2022): 4403. http://dx.doi.org/10.3390/nano12244403.

Full text
Abstract:
The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.
APA, Harvard, Vancouver, ISO, and other styles
27

Il’ina, Marina V., Olga I. Soboleva, Soslan A. Khubezov, Vladimir A. Smirnov, and Oleg I. Il’in. "Study of Nitrogen-Doped Carbon Nanotubes for Creation of Piezoelectric Nanogenerator." Journal of Low Power Electronics and Applications 13, no. 1 (January 22, 2023): 11. http://dx.doi.org/10.3390/jlpea13010011.

Full text
Abstract:
The creation of sustainable power sources for wearable electronics and self-powered systems is a promising direction of modern electronics. At the moment, a search for functional materials with high values of piezoelectric coefficient and elasticity, as well as non-toxicity, is underway to generate such power sources. In this paper, nitrogen-doped carbon nanotubes (N-CNTs) are considered as a functional material for a piezoelectric nanogenerator capable of converting nanoscale deformations into electrical energy. The effect of defectiveness and of geometric and mechanical parameters of N-CNTs on the current generated during their deformation is studied. It was established that the piezoelectric response of N-CNTs increased nonlinearly with an increase in the Young’s modulus and the aspect ratio of the length to diameter of the nanotube and, on the contrary, decreased with an increase in defectiveness not caused by the incorporation of nitrogen atoms. The advantages of using N-CNT to create energy-efficient piezoelectric nanogenerators are shown.
APA, Harvard, Vancouver, ISO, and other styles
28

Avanish Babu, T., and W. Madhuri. "A hybrid microwave sintered PZT composite as a flexible piezoelectric nanogenerator." RSC Advances 12, no. 53 (2022): 34454–62. http://dx.doi.org/10.1039/d2ra05570h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shin, Dong-Myeong, and Yoon-Hwae Hwang. "Piezoelectric Nanogenerators: Energy Harvesting Technology." Vacuum Magazine 3, no. 2 (June 30, 2016): 17–20. http://dx.doi.org/10.5757/vacmac.3.2.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Briscoe, Joe, Nimra Jalali, Peter Woolliams, Mark Stewart, Paul M. Weaver, Markys Cain, and Steve Dunn. "Measurement techniques for piezoelectric nanogenerators." Energy & Environmental Science 6, no. 10 (2013): 3035. http://dx.doi.org/10.1039/c3ee41889h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Filippin, A. Nicolas, Juan R. Sanchez-Valencia, Xabier Garcia-Casas, Victor Lopez-Flores, Manuel Macias-Montero, Fabian Frutos, Angel Barranco, and Ana Borras. "3D core-multishell piezoelectric nanogenerators." Nano Energy 58 (April 2019): 476–83. http://dx.doi.org/10.1016/j.nanoen.2019.01.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lu, Lijun, Wenqing Ding, Jingquan Liu, and Bin Yang. "Flexible PVDF based piezoelectric nanogenerators." Nano Energy 78 (December 2020): 105251. http://dx.doi.org/10.1016/j.nanoen.2020.105251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Xudong. "Piezoelectric Nanogenerators for Mechanical Energy Harvesting." International Symposium on Microelectronics 2011, no. 1 (January 1, 2011): 000367–75. http://dx.doi.org/10.4071/isom-2011-tp5-paper3.

Full text
Abstract:
Piezoelectric ZnO nanowires (NWs) have recently been demonstrated as a promising concept to harvest micro- and nano-scale mechanical energy from the surroundings. It is named nanogenerator. The operation principle relies on the bending of NWs by an external disturbance which creates piezoelectric potential along the deformed surfaces. The piezoelectric potential was predicted to be hundreds of milivolts per NW and the optimal power output per NW could reach a few nanowatts when it is under resonant oscillation. The first nanogenerator prototype was fabricated with vertically aligned ZnO NW arrays that were placed beneath a zigzag-shaped metal electrode with a small gap. In this design, all the NWs can be actuated simultaneously and continuously by ultrasonic waves, leading to the production of a continuous DC current. A textile fiber based nanogenerator has been developed for harvesting low-frequency vibration/friction energies. A piezoelectric thin film based nanogenerator was demonstrated to convert low-speed wind energy into electricity through the stimulated oscillation. These devices have the potential to fundamentally improve the mechanical energy harvesting capability with advanced nanostructure building blocks and compact designs, which might eventually lead to an effective power source for self-powered electronic systems with higher energy density, higher efficiency, longer life time, as well as lower cost.
APA, Harvard, Vancouver, ISO, and other styles
34

Widakdo, Januar, Wen-Ching Lei, Anawati Anawati, Subrahmanya Thagare Manjunatha, Hannah Faye M. Austria, Owen Setiawan, Tsung-Han Huang, Yu-Hsuan Chiao, Wei-Song Hung, and Ming-Hua Ho. "Effects of Co-Solvent-Induced Self-Assembled Graphene-PVDF Composite Film on Piezoelectric Application." Polymers 15, no. 1 (December 28, 2022): 137. http://dx.doi.org/10.3390/polym15010137.

Full text
Abstract:
A persistent purpose for self-powered and wearable electronic devices is the fabrication of graphene-PVDF piezoelectric nanogenerators with various co-solvents that could provide enhanced levels of durability and stability while generating a higher output. This study resulted in a piezoelectric nanogenerator based on a composite film composed of graphene, and poly (vinylidene fluoride) (PVDF) as a flexible polymer matrix that delivers high performance, flexibility, and cost-effectiveness. By adjusting the co-solvent in the solution, a graphene-PVDF piezoelectric nanogenerator can be created (acetone, THF, water, and EtOH). The solution becomes less viscous and is more diluted the more significant the concentration of co-solvents, such as acetone, THF, and EtOH. Additionally, when the density is low, the thickness will be thinner. The final film thickness for all is ~25 µm. Furthermore, the- crystal phase becomes more apparent when graphene is added and combined with the four co-solvents. Based on the XRD results, the peak changes to the right, which can be inferred to be more dominant with the β-phase. THF is the co-solvent with the highest piezoelectric output among other co-solvents. Most of the output voltages produced are 0.071 V and are more significant than the rest.
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Ju-Hyuck, Keun Young Lee, Manoj Kumar Gupta, Tae Yun Kim, Dae-Yeong Lee, Junho Oh, Changkook Ryu, et al. "Nanogenerators: Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator (Adv. Mater. 5/2014)." Advanced Materials 26, no. 5 (February 2014): 820. http://dx.doi.org/10.1002/adma.201470032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ippili, Swathi, Venkatraju Jella, Alphi Maria Thomas, and Soon-Gil Yoon. "The Recent Progress on Halide Perovskite-Based Self-Powered Sensors Enabled by Piezoelectric and Triboelectric Effects." Nanoenergy Advances 1, no. 1 (July 23, 2021): 3–31. http://dx.doi.org/10.3390/nanoenergyadv1010002.

Full text
Abstract:
Sensors have recently gathered significant attention owing to the rapid growth of the Internet of Things (IoT) technology for the real-time monitoring of surroundings and human activities. Particularly, recently discovered nanogenerator-based self-powered sensors are potential candidates to overcome the existing problems of the conventional sensors, including regular monitoring, lifetime of a power unit, and portability. Halide perovskites (HPs), with an excellent photoactive nature, dielectric, piezoelectric, ferroelectric, and pyroelectric properties, have been potential candidates for obtaining flexible and self-powered sensors including light, pressure, and temperature. Additionally, the photo-stimulated dielectric, piezoelectric, and triboelectric properties of HPs make them efficient entrants for developing bimodal and multimode sensors to sense multi-physical signals individually or simultaneously. Therefore, we provide an update on the recent progress in self-powered sensors based on pyroelectric, piezoelectric, and triboelectric effects of HP materials. First, the detailed working mechanism of HP-based piezoelectric, triboelectric, and pyroelectric nanogenerators—operated as self-powered sensors—is presented. Additionally, the effect of light on piezoelectric and triboelectric effects of HPs, which is indispensable in multimode sensor application, is also systematically discussed. Furthermore, the recent advances in nanogenerator-based self-powered bimodal sensors comprising HPs as light-active materials are summarized. Finally, the perspectives and continuing challenges of HP-based self-powered sensors are presented with some opportunities for future development in self-powered multimode sensors.
APA, Harvard, Vancouver, ISO, and other styles
37

dos Santos, Andreia, Filipe Sabino, Ana Rovisco, Pedro Barquinha, Hugo Águas, Elvira Fortunato, Rodrigo Martins, and Rui Igreja. "Optimization of ZnO Nanorods Concentration in a Micro-Structured Polymeric Composite for Nanogenerators." Chemosensors 9, no. 2 (January 31, 2021): 27. http://dx.doi.org/10.3390/chemosensors9020027.

Full text
Abstract:
The growing use of wearable devices has been stimulating research efforts in the development of energy harvesters as more portable and practical energy sources alternatives. The field of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), especially employing zinc oxide (ZnO) nanowires (NWs), has greatly flourished in recent years. Despite its modest piezoelectric coefficient, ZnO is very attractive due to its sustainable raw materials and the facility to obtain distinct morphologies, which increases its multifunctionality. The integration of ZnO nanostructures into polymeric matrices to overcome their fragility has already been proven to be fruitful, nevertheless, their concentration in the composite should be optimized to maximize the harvesters’ output, an aspect that has not been properly addressed. This work studies a composite with variable concentrations of ZnO nanorods (NRs), grown by microwave radiation assisted hydrothermal synthesis, and polydimethylsiloxane (PDMS). With a 25 wt % ZnO NRs concentration in a composite that was further micro-structured through laser engraving for output enhancement, a nanogenerator (NG) was fabricated with an output of 6 V at a pushing force of 2.3 N. The energy generated by the NG could be stored and later employed to power small electronic devices, ultimately illustrating its potential as an energy harvesting device.
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Wei, Yunqi Cao, and Nelson Sepúlveda. "Thin Film Piezoelectric Nanogenerator Based on (100)-Oriented Nanocrystalline AlN Grown by Pulsed Laser Deposition at Room Temperature." Micromachines 14, no. 1 (December 30, 2022): 99. http://dx.doi.org/10.3390/mi14010099.

Full text
Abstract:
In wearable or implantable biomedical devices that typically rely on battery power for diagnostics or operation, the development of flexible piezoelectric nanogenerators (NGs) that enable mechanical-to-electrical energy harvesting is finding promising applications. Here, we present the construction of a flexible piezoelectric nanogenerator using a thin film of room temperature deposited nanocrystalline aluminium nitride (AlN). On a thin layer of aluminium (Al), the AlN thin film was grown using pulsed laser deposition (PLD). The room temperature grown AlN film was composed of crystalline columnar grains oriented in the (100)-direction, as revealed in images from transmission electron microscopy (TEM) and X-ray diffraction (XRD). Fundamental characterization of the AlN thin film by piezoresponse force microscopy (PFM) indicated that its electro-mechanical energy conversion metrics were comparable to those of c-axis oriented AlN and zinc oxide (ZnO) thin films. Additionally, the AlN-based flexible piezoelectric NG was encapsulated in polyimide to further strengthen its mechanical robustness and protect it from some corrosive chemicals.
APA, Harvard, Vancouver, ISO, and other styles
39

Meng, Shuchang, Ning Wang, and Xia Cao. "Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review." Materials 16, no. 21 (October 27, 2023): 6916. http://dx.doi.org/10.3390/ma16216916.

Full text
Abstract:
Energy storage devices such as supercapacitors (SCs), if equipped with built-in energy harvesters such as piezoelectric nanogenerators, will continuously power wearable electronics and become important enablers of the future Internet of Things. As wearable gadgets become flexible, energy items that can be fabricated with greater compliance will be crucial, and designing them with sustainable and flexible strategies for future use will be important. In this review, flexible supercapacitors designed with built-in nanogenerators, mainly piezoelectric nanogenerators, are discussed in terms of their operational principles, device configuration, and material selection, with a focus on their application in flexible wearable electronics. While the structural design and materials selection are highlighted, the current shortcomings and challenges in the emerging field of nanogenerators that can be integrated into flexible supercapacitors are also discussed to make wearable devices more comfortable and sustainable. We hope this work may provide references, future directions, and new perspectives for the development of electrochemical power sources that can charge themselves by harvesting mechanical energy from the ambient environment.
APA, Harvard, Vancouver, ISO, and other styles
40

Briscoe, Joe, and Steve Dunn. "Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters." Nano Energy 14 (May 2015): 15–29. http://dx.doi.org/10.1016/j.nanoen.2014.11.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pawar, Omkar Y., Snehal L. Patil, Rahul S. Redekar, Sharad B. Patil, Sooman Lim, and Nilesh L. Tarwal. "Strategic Development of Piezoelectric Nanogenerator and Biomedical Applications." Applied Sciences 13, no. 5 (February 23, 2023): 2891. http://dx.doi.org/10.3390/app13052891.

Full text
Abstract:
Nanogenerators are the backbone of self-powered systems and they have been explored for application in miniaturized biomedical devices, such as pacemakers. Piezoelectric nanogenerators (PENGs) have several advantages, including their high efficiency, low cost, and facile fabrication processes, which have made them one of the most promising nano power sources for converting mechanical energy into electrical energy. In this study, we review the recent major progress in the field of PENGs. Various approaches, such as morphology tuning, doping, and compositing active materials, which have been explored to improve the efficiency of PENGs, are discussed in depth. Major emphasis is given to material tailoring strategies and PENG fabrication approaches, such as 3D printing, and their applications in the biomedical field. Moreover, hybrid nanogenerators (HNG), which have evolved over the last few years, are discussed. Finally, the current key challenges and future directions in this field are presented.
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Guocheng, Songrui Zhao, Robert D. E. Henderson, Zoya Leonenko, Eihab Abdel-Rahman, Zetian Mi, and Dayan Ban. "Nanogenerators based on vertically aligned InN nanowires." Nanoscale 8, no. 4 (2016): 2097–106. http://dx.doi.org/10.1039/c5nr06841j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Han, Sang A., Tae-Ho Kim, Sung Kyun Kim, Kang Hyuck Lee, Hye-Jeong Park, Ju-Hyuck Lee, and Sang-Woo Kim. "Piezoelectric Nanogenerators: Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator (Adv. Mater. 21/2018)." Advanced Materials 30, no. 21 (May 2018): 1870143. http://dx.doi.org/10.1002/adma.201870143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Roji M, Ani Melfa, Jiji G, and Ajith Bosco Raj T. "A retrospect on the role of piezoelectric nanogenerators in the development of the green world." RSC Advances 7, no. 53 (2017): 33642–70. http://dx.doi.org/10.1039/c7ra05256a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Šutka, A., K. Mālnieks, A. Linarts, M. Timusk, V. Jurķāns, I. Gorņevs, J. Blūms, A. Bērziņa, U. Joost, and M. Knite. "Inversely polarised ferroelectric polymer contact electrodes for triboelectric-like generators from identical materials." Energy & Environmental Science 11, no. 6 (2018): 1437–43. http://dx.doi.org/10.1039/c8ee00550h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Cong, Wei Fan, Shujuan Wang, Qi Wang, Yifan Zhang, and Kai Dong. "Recent Progress of Wearable Piezoelectric Nanogenerators." ACS Applied Electronic Materials 3, no. 6 (May 5, 2021): 2449–67. http://dx.doi.org/10.1021/acsaelm.1c00165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Zhong Lin, Xudong Wang, Jinhui Song, Jin Liu, and Yifan Gao. "Piezoelectric Nanogenerators for Self-Powered Nanodevices." IEEE Pervasive Computing 7, no. 1 (January 2008): 49–55. http://dx.doi.org/10.1109/mprv.2008.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lee, Ju-Hyuck, Keun Young Lee, Brijesh Kumar, Nguyen Thanh Tien, Nae-Eung Lee, and Sang-Woo Kim. "Highly sensitive stretchable transparent piezoelectric nanogenerators." Energy Environ. Sci. 6, no. 1 (2013): 169–75. http://dx.doi.org/10.1039/c2ee23530g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cha, Seung Nam, Ju-Seok Seo, Seong Min Kim, Hyun Jin Kim, Young Jun Park, Sang-Woo Kim, and Jong Min Kim. "Sound-Driven Piezoelectric Nanowire-Based Nanogenerators." Advanced Materials 22, no. 42 (August 30, 2010): 4726–30. http://dx.doi.org/10.1002/adma.201001169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ko, Eui Jin, Jisu Hong, Chan Eon Park, and Doo Kyung Moon. "Enhanced chemical and physical properties of PEDOT doped with anionic polyelectrolytes prepared from acrylic derivatives and application to nanogenerators." Nanoscale Advances 1, no. 11 (2019): 4384–92. http://dx.doi.org/10.1039/c9na00314b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography