Academic literature on the topic 'PIFA antenna design'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PIFA antenna design.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PIFA antenna design"
Zhang, Li Yun, Zheng Ron Xiao, and Jun Liao. "An Improved Design of PIFA Antenna on Mobile Phone." Advanced Materials Research 718-720 (July 2013): 1634–38. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1634.
Full textLi, Hong Mei, Jin Yue Wang, Li Kun Xing, Xin Yu Cao, and Tie Xin Yang. "A Design of EBG-PIFA for RFID Applications in UHF Band." Applied Mechanics and Materials 427-429 (September 2013): 1141–44. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.1141.
Full textHaque, Akramul, Sheikh Alimur Razi, Nur Mohammad, Md Shamsul Arifin, and Quazi Delwar Hossain. "A Design Consideration for Planar Inverted Fractal Antenna to Minimize Length-Dependent Specific Absorption Rate." Indonesian Journal of Electrical Engineering and Computer Science 12, no. 3 (December 1, 2018): 1171. http://dx.doi.org/10.11591/ijeecs.v12.i3.pp1171-1178.
Full textCasula, Giovanni, and Giorgio Montisci. "A Design Rule to Reduce the Human Body Effect on Wearable PIFA Antennas." Electronics 8, no. 2 (February 21, 2019): 244. http://dx.doi.org/10.3390/electronics8020244.
Full textAhmad, Muhammad Sajjad, and Che Young Kim. "Dual-Element PIFA Design with Dual Shorting Pins for Multiband Communication Devices." International Journal of Antennas and Propagation 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/742352.
Full textMo, Lingfei, and Chenyang Li. "Double Loop Inductive Feed Patch Antenna Design for Antimetal UHF RFID Tag." International Journal of Antennas and Propagation 2019 (March 21, 2019): 1–8. http://dx.doi.org/10.1155/2019/2917619.
Full textMohd Razali, Nurul Inshirah, Norhudah Seman, and Nur Ilham Aliyaa Ishak. "Design and Specific Absorption Rate of 2.6 GHz Rectangular-Shaped Planar Inverted-F Antenna." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 2 (May 1, 2018): 741. http://dx.doi.org/10.11591/ijeecs.v10.i2.pp741-747.
Full textCheung, Cheuk Yin, Joseph S. M. Yuen, and Steve W. Y. Mung. "Miniaturized Printed Inverted-F Antenna for Internet of Things: A Design on PCB with a Meandering Line and Shorting Strip." International Journal of Antennas and Propagation 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/5172960.
Full textGhnimi, S., A. Nasri, and A. Gharsallah. "Study of a New Design of the Planar Inverted-F Antenna for Mobile Phone Handset Applications." Engineering, Technology & Applied Science Research 10, no. 1 (February 3, 2020): 5270–75. http://dx.doi.org/10.48084/etasr.3287.
Full textRudant, L., C. Delaveaud, and P. Ciais. "Compact Multiantenna." International Journal of Antennas and Propagation 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/748070.
Full textDissertations / Theses on the topic "PIFA antenna design"
Saif, Khalid, and Nazem Alsmadi. "Mobile Phone Antenna Design." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1080.
Full textObeidat, Khaled Ahmad. "Design Methodology for Wideband Electrically Small Antennas (ESA) Based on the Theory of Characteristic Modes (CM)." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274730653.
Full textElfergani, Issa T. "Investigation, design and implementation of frequency tuneable antennas for mobile handset and UWB applications : simulation and measurement of tunable antennas for handheld mobile handsets and UWB system, investigations of frequency tuneable range, antenna radiation performance and antenna design optimisation using parametric studies." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/13761.
Full textPanayi, Petros K. "Design and comparative performance evaluation of novel mobile handset antennas and their radiative effects on users." Thesis, University of South Wales, 2000. https://pure.southwales.ac.uk/en/studentthesis/design-and-comparative-performance-evaluation-of-novel-mobile-handset-antennas-and-their-radiative-effects-on-users(f084a72c-b06d-47a6-8546-8ada0844c981).html.
Full textHraga, Hmeda I. "Modelling and design of compact wideband and ultra-wideband antennas for wireless communications. Simulation and measurement of planer inverted F antennas (PIFAs) for contemporary mobile terminal applications, and investigations of frequency range and radiation performance of UWB antennas with design optimisation using parametric studies." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/5668.
Full textGeneral Secretariat of Education and Scientific Research Libya
Hraga, Hmeda Ibrahim. "Modelling and design of compact wideband and ultra-wideband antennas for wireless communications : simulation and measurement of planer inverted F antennas (PIFAs) for contemporary mobile terminal applications, and investigations of frequency range and radiation performance of UWB antennas with design optimisation using parametric studies." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/5668.
Full textWahidi, Ashar. "Design and optimization of multiple printed inverted-F antennas (PIFAs) on a semi-populated mobile handset." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114526.
Full textCette thèse analyse les caractéristiques des radiations d'un téléphone mobile cellulaire semi-peuplé utilisant deux antennes imprimées en F-inversé (PIFAs). L'enquête est réalisée à trois fréquences différentes; la bande LTE 13 (746-786 MHz), GSM-900 (890-960 MHz) et GSM-1800 (1710-1880 MHz). Le téléphone mobile est constitué d'une batterie et d'un écran LCD dont le but est de rendre le modèle étudié plus réaliste. Le modèle utilisé vise d'abord à représenter la conception des PIFAs et ceci avec d'autres composants. Par référence a la méthode de conception qui a été décrite, les antennes de trois semi-peuplées téléphones mobiles sont conçus pour satisfaire des objectifs spécifiques de performance opérationnelle. Les deux PIFAs fabriques pour les mobiles GSM-1800 ont un gain maximal de 2.98 dB and 3.18 dB, coefficients de réflexion inférieur à -9 dB et un couplage maximal mutuel des -7.9 dB. De plus, les deux PIFAs fabriques pour les mobiles GSM-900 ont un gain maximal de -0.02 dB and -3 dB, coefficients de réflexion ci-dessous -10.5 dB et un couplage maximal mutuel de -6 dB. Enfin, les deux PIFAs fabriques pour les mobiles LTE-Band 13 atteignent un gain maximal de 0.19 dB and -11 dB, un coefficient de réflexion ci-dessous -4.5 dB et un couplage maximal mutuel de -11 dB. Les trois modèles indiquent que la présence d'autres composants provoquent la dégradation des performances des radiations. Néanmoins, les trois mobiles répondent à toutes les caractéristiques de rendement sauf celui pour le couplage mutuel. Des simulation utilisant des vecteurs pleine-onde pointant sont effectuées pour investiguer le couplage entre les PIFAs. Les simulations indiquent que le tranfert de la puissance couplée entre les antennes pour les mobiles GSM-1800 et GSM-900 se déroule en dehors du mobile. Alors que la puissance couplée entre les antennes de téléphones LTE-bande 13 se fait à travers la structure et le substrat-lié du mobile. Une récapitulation des différentes techniques de réduction des couplages mutuels a été présentée. Une méthode visant les ondes spatiales i.e., utilisation d'un radiateur parasite, est appliquée aux mobiles GSM 1800 et GSM--900. Le radiateur parasite parvient à rendre le couplage maximal, pour les antennes GSM-1800, au-dessous de -18 dB et pour les antennes GSM-900 au-dessous de -17,5 dB.Le couplage mutuel de la LT-bande 13 est réduite en utilisant une structure de bande-interdite électromagnétique, qui apporte avec succès le couplage maximal mutuel pour les antennes à moins de -12,2 dB.En conclusion, la structure PIFA est une option viable pour une utilisation d'un téléphone mobile pour les bandes de fréquences d'une enquête, et ceci en appliquant les techniques de réduction mutuelles de couplage appropriées.
Elfergani, Issa T., Raed A. Abd-Alhameed, Mohammed S. Bin-Melha, Chan H. See, Dawei Zhou, Mark B. Child, and Peter S. Excell. "A Frequency Tunable PIFA Design for Handset Applications." 2010. http://hdl.handle.net/10454/4804.
Full textA frequency tunable planar inverted F antenna (PIFA) is presented for use in the following bands: DCS, PCS, and UMTS. Initially, the tuning was achieved by placing a lumped capacitor, with values in the range of 1.5 to 4 pF, along the slot of the radiator. The final tuning circuit uses a varactor diode, and discrete lumped elements are fully integrated with the antenna. The antenna prototype is tunable over from 1850 MHz to 2200 MHz, with an associated volume of 21×13.5×5 mm3, making it suitable for potential integration in a commercial handset or mobile user terminal.
Tu, Jia-Sheng, and 涂嘉昇. "Design of open slot antenna and PIFA for WLAN." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/z25cy9.
Full text國立臺灣海洋大學
電機工程學系
102
The purpose of this thesis is to propose an open slot antenna and PIFA for WLAN applications. Both structure are simple and easy to make. it conformed to the requests of many consumer products and communication facilities that concerned with easy manufacture ,light weight, low cost and small size. The open slot antenna is use microstrip line to design, the antenna size is (30#westeur024#35#westeur024#0.8mm^3),substrate thickness is 0.8mm of double-sided FR4。Front of the antenna has a rectangular metal(7#westeur024#6mm^2),and connected to the input impedance of 50 ohm microstrip line. The back of the antenna has L-shaped and U-shaped slot,them resonate high and low frequency respectively. First use the L-shaped slot to obtained low frequency, then in the less sensitive of low frequencies and a built-in inverted U- slot to obtained the high frequency, Final change the size and shape of the slot to complete the resonant frequencies, Without increasing the antenna size to operating band of WLAN applications 2.4/5.2/5.8GHz. A typical PIFA include a rectangular metal sheet, ground plane and short circuit plate connect edge of the rectangular flat metal sheet shorter side. The proposed PIFA is use coaxial feed mechanism to design. The inner conductor of the coaxial line is connected to the radiator plane over the substrate, and through the dielectric substrate, and the outer conductor of the coaxial line connected to ground plane, and use short circuiting contactor instead of short circuit plate. By changing the size and shape of the radiator plane,or changing position of feed and short circuiting contactor to reach frequency at 2.4GHz and 5 ~ 6GHz dual-band planar inverted-F antenna's. Finally, simulate Return loss is similar to measure of the PIFA and open slot antenna. Although it is shift of frequency but is not significantly affected, the bandwidth still includes frequency of WLAN. In conclusion, the simulate and measure are not exactly the same, but the trend is close to measure of the characteristic.
YEH, YI-HSIEN, and 葉怡賢. "Design of Multi-Band PIFA Antenna Using Parasitic and Slot Elements." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8w68ap.
Full text國立臺北科技大學
電子工程系
107
With the rapid development of wireless communication, the demand for mobile communication devices based on multi-band operation is increasing, and the development of multi-band antennas is promoted. Planar inverted-F antenna (PIFA) has excellent performances such as small size, light weight, high efficiency and low cost, which is widely used in portable devices like mobile phones; in addition, PIFAs are also commonly applied in RFID, MIMO and wireless communication system. However, most of conventional PIFA antennas can only be operated in a single frequency band. This is the main disadvantage of the antenna, which is also the purpose of this research. In this thesis, the high-frequency structure simulator(HFSS) is used to simulate the PIFA antenna that can be worked in multi-band. Moreover, the current distribution can be observed and analyzed. The multi-band PIFA antenna is designed by the use of parasitic and slot elements, which are pattern measured in anechoic chamber and its return loss is measured by using the network analyzer. The antenna consists of main patch with parasitic element and ground plane. The volume is 40 x 31 x 0.8 〖mm〗^3 and 60 x 40 x 1.6 〖mm〗^3, respectively. The operating frequency is optimized from a single band to multi-band, which can improve the practical disadvantage of the conventional PIFA antenna effectively.
Book chapters on the topic "PIFA antenna design"
Kumari, Ranjana, Archit Kumar Jha, Anuj Sachan, Aryan Kishan, and Milkey Jain. "Design and Analysis of Pattern Reconfigurable MIMO Antenna Using PIFA Structure." In Advances in Smart Communication and Imaging Systems, 603–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9938-5_56.
Full textThavakumar, Subathra, and M. Susila. "Design of an Internal Multi-resonant PIFA Antenna for Mobile Telecommunication Networks." In Lecture Notes in Electrical Engineering, 203–9. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7293-2_22.
Full textGundumalla, Ashok, Sachin Agrawal, and Manoj Singh Parihar. "A Design of Compact Planar Active-Integrated Inverted-F Antenna (AI-PIFA) for Mobile Handsets." In Lecture Notes in Electrical Engineering, 575–84. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7395-3_64.
Full textJakobsson, Stefan, Björn Andersson, and Fredrik Edelvik. "Multiobjective Optimization Applied to Design of PIFA Antennas." In Scientific Computing in Electrical Engineering SCEE 2008, 437–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12294-1_54.
Full textConference papers on the topic "PIFA antenna design"
Kaabi, Amin H. Al. "PIFA antenna design for 4G wireless communications." In 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2017. http://dx.doi.org/10.1109/icitisee.2017.8285492.
Full textChakraborty, Ipsita, and Vibha Rani Gupta. "Design and parametric study of ultra wideband PIFA Antenna." In 2016 IEEE Indian Antenna Week (IAW 2016). IEEE, 2016. http://dx.doi.org/10.1109/indianaw.2016.7883593.
Full textThavakumar, Subathra, and M. Susila. "Design of multi resonant PIFA antenna for mobile telecommunication networks." In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2017. http://dx.doi.org/10.1109/wispnet.2017.8300202.
Full textNg, Wai-Hau, Yang-Hong Lee, Eng-Hock Lim, and Boon-Kuan Chung. "Design of a Compact PIFA Tag Antenna for Wearable Electronics." In 2018 IEEE 38th International Electronics Manufacturing Technology Conference (IEMT). IEEE, 2018. http://dx.doi.org/10.1109/iemt.2018.8511717.
Full textNurul, H. M. R., Z. Mansor, and M. K. A. Rahim. "Planar inverted-f antenna (PIFA) design for millimeter wave application." In 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T). IEEE, 2017. http://dx.doi.org/10.1109/ice2t.2017.8215980.
Full textQingdong Li, Quanyuan Feng, and Jingmin Yan. "Design and analysis of ferrite loaded improved slot PIFA antenna." In 2010 Seventh International Conference on Wireless and Optical Communications Networks - (WOCN). IEEE, 2010. http://dx.doi.org/10.1109/wocn.2010.5587328.
Full textLee, Shin-Rou, Eng-Hock Lim, Fwee-Leong Bong, Boon-Kuan Chung, and Kim-Yee Lee. "Miniature PIFA-like Patch Antenna for UHF RFID Tag Design." In 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2018. http://dx.doi.org/10.1109/apcap.2018.8538105.
Full textAlharbi, Mohannad, and Sima Noghanian. "Design and simulation of miniaturized PIFA antenna for biomedical sensors." In 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi-nrsm.2014.6927969.
Full textGuan Zong qi and Zhang Ming. "The design of internal loop PIFA antenna in mobile phone." In 2nd International Conference on Computer and Automation Engineering (ICCAE 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccae.2010.5451857.
Full textSahu, Lalit Kumar, and Rajeev Jyoti. "Design and development of triple band U Slot PIFA antenna." In 2014 IEEE International Microwave and RF Conference (IMaRC). IEEE, 2014. http://dx.doi.org/10.1109/imarc.2014.7038992.
Full text